®

§0) DIGITAL RESEARCH

Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

CP/M 2.2 ALTERATION GUIDE

Copyright (e) 1979

DIGITAL RESEARCH

Copyright

Copyright (¢) 1979 by Digital Research. Al rights reserved.
No part of this publication may be reproduced, transmitted,
transeribed, stored in a retrieval system, or translated into
any language or computer language, in any form or by any
means, electronie, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written permission of
Digital Research, Post Office Box 579, Pacific Grove,
California 93950. ‘

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically diseclaims anv
implied warranties of merchantability or fitness for any parti-
cular purpose. Further, Digital Research reserves the right
to revise this publication and to make changes from time to
time in the content hereof without obligation of Digital
Research to notify any person of such revision or changes.

Trademarks

CP/M is a registered trademark of Digital Research. MP/M,
MAC, and SID are trademarks of Digital Research.

CP/M 2.2 ALTERATION GUIDE

Copyright (c) 1979
Digital Research, Box 579
Pacific Grove, California

1, Introduction+ ¢« ¢« « .
2., First Level System Regeneration ,
3. Second Level System Generation .
4, Sample Getsys and Putsys Programs
5. Diskette Organization ,
6. The BIOS Entry Points
7. A Sample BIOS . . ¢ & &« o o o o &
8. A Sample Cold Start Loader ., . .
9. Reserved Locations in Page Zero .
10, Disk Parameter Tables ,
11. The DISKDEF Macro Library
12, Sector Blocking and Deblocking .

Appendix A

Appendix

Appendix

Appendix

Appendix

Appendix
Appendix

e e o o o o
e e o o e o o
e e e s e ¢ o
e e o o o o
e e o o s ¢ o
e e o o o o
e e o e o o

QamEoOOw

L] . L] L] L] L]]

e e e o o »

. . L[] . L) L] L]

e e o e e o

19
12
14
21
22
23
25

39

1. INTRODUCTION

The standard CP/M system assumes operation on an Intel MDS-3060
microcomputer development system, but is designed so that the user can
alter a specific set of subroutines which define the hardware
operating environment., 1In this way, the user can produce a diskette
which operates with any IBM-3741 format compatible drive controller
and other peripheral devices.

Altnough standard CP/M 2.0 is configured for single density floppy
disks, field-alteration features allow adaptation to a wide variety of
disk subsystems from single drive minidisks through high-capacity
"hard disk" systems. In order to simplify the following adaptation
process, we assume that CP/M 2.0 will first be configured for single
density floppy disks where minimal editing and debugging tools are
available, If an earlier version of CP/M 1is available, the
customizing process is eased considerably. 1In this latter case, you
may wisn to briefly review the system generation process, and skip to
later sections which discuss system alteration for non-standard disk
systems,

In order to achieve device independence, CP/M 1is separated into
three distinct modules:

BIOS - basic I/0 system which is environnent dependent

BDOS - basic disk operating system which is not dependent
upon the hardware configuration

CCP - the console command processor which uses the BDOS

Of these modules, only the BIOS is dependent upon the particular
hardware. That is, the user can "patch" the distribution version of
CP/M to provide a new BIOS which provides a customized interface
between the remaining CP/M modules and the user's own hardware system.
The purpose of this document is to provide a step-by-step procedure
for patching your new BIOS into CP/M.

If CP/M is being tailored to your computer system for the first

time, the new BIOS requires some relatively simple software
development and testing. The standard BIOS is listed in Appendix B,
and can be used as a model for the customized package. A skeletal

version of the BIOS 1is given in Appendix C which can serve as the
basis for a modified BIOS. 1In addition to the B8I0OS, the wuser must
write a simple memory loader, called GETSYS, which brings the
operating system into memory. 1In order to patcn the new BIOS 1into
CP/M, the user must write the reverse of GETSYS, called PUTSYS, which
vlaces an altered version of CP/M back onto the diskette. PUTSYS can
be derived from GETSYS by changing the disk read commands into disk
write commands. Sample skeletal GETSYS and PUTSYS programs are
described in Section 3, and listed in Apvoendix D. In order to make
the CP/HM system work automatically, the user must also supply a cold
start loader, similar to the one provided with CP/M (listed in
Appendices A and B). A skeletal form of a cold start loader is given
in Appendix E which can serve as a model for your loader.

(All Information Contained Herein is Proprietary to Digital Research.)

1

2, FIRST LEVEL SYSTEM REGENERATION

The procedure to follow to patcn the CP/M system is given below in
several steps. Address references in each step are shown with a
following "H" which denotes the hexadecimal radix, and are given for a
20K CP/#M system. For larger CP/M systems, add a "bias" to each
address which is shown with a "+b" following it, where b is equal to
tne memory size - 20K. Values for b in various standard memory sizes
are

24K: b = 24K - 29K = 4K = 1040H
32K: o = 32K - 20K = 12K = 30994
49K: b = 49K - 20K = 20K = 5009H
48K: b = 48K - 20K = 28K = 7600H
56K: b = 56K - 20K = 36K = 900094
62K: b = 62K - 20K = 42K = A8090H
04K: b = 64K - 20K = 44K = Bddodn

Note: The standard distribution version of CP/M 1is set for
operation within a 20K memory system. Therefore, you must first bring
up the 20K CP/M system, and then configure it for your actual memory
size (see Second Level System Generation),.

(1) Review Section 4 and write a GETSYS program which reads the
first two tracks of a diskette into memory. The data from the diskette
must begin at 1location 3386H. Code GETSYS so that it starts at
location 1¢¥¥H (pase of the TPA), as shown in the first wvart of
Appendix d.

(2) Test the GETSYS program by reading a blank diskette into
memory, and check to see that the data has been read properly, and
that the diskette has not been altered in any way by the GETSYS
program.

(3) Run the GETSYS program using an initialized CP/M diskette to
see 1if GETSYS 1loads CP/M starting at 3380H (the operating system
actually starts 128 bytes later at 3493H).

(4) Review Section 4 and write the PUTSYS program which writes
memory starting at 338#Hd back onto the first two tracks of the
diskette. The PUTSYS program should be located at 20@H, as shown in
the second part of Appendix D.

(5) Test the PUTSYS program using a blank uninitialized diskette
by writing a portion of memory to the first two tracks; clear memory
and read it back using GETSYS. Test PUTSYS completely, since this
program will be used to alter CP/M on disk.

(6) Study Sections 5, 6, and 7, along with the distribution
version of the BIOS given in Appendix B, and write a simple version
which performs a similar function for the customized environment. Use
the program given in Appendix C as a model. Call this new BIOS by the
name CBIOS (customized BIOS). Implement only the primitive disk
operations on a single drive, and simple console input/output
functions in this phase.

(All Information Contained Herein is Proprietary to Digital Research.)

2

(7) Test CBIOS completely to ensure that it voroperly performs
console character I/0 and disk reads and writes, Be especially
careful to ensure that no disk write operations occur accidently
during read operations, - and check that the proper track and sectors
are addressed on all reads and writes. Failure to make these checks
may cause destruction of the initialized CP/4 system after it is
patched.

(83) Referring to Figure 1 in Section 5, note that the BIOS 1is
placed between locations 4A0dH and 4FFFH. Read the CP/M system using
GETSYS and replace the BIOS segment by the new CBIOS developed in step
(6) and tested in step (7). This replacement is done in the memory of
the machine, and will be placed on the diskette in the next step.

(9) Use PUTSYS to place the patched memory image of CP/M onto the
first two tracks of a blank diskette for testing.

(14) Use GETSYS to bring the copied memory image from the test
diskette back into memory at 3380H, and check to ensure that it has
loaded back properly (clear memory, if possible, before the 1load).
Upon successful load, branch to the cold start code at location 4Ag@H.
The cold start routine will initialize page zero, then jump to the CCP
at location 340#¥H which will call the BDOS, which will call the CBIOS.
The CBIOS will be asked by the CCP to read sixteen sectors on track 2,
and if successful, CP/M will type "A>", the systein prompt.

When you make it this far, you are almost on the air. If you have
trouble, use whatever debug facilities you have available to trace and
breakpoint your CBIOS.

(11) Upon completion of step (16), CP/M has promoted the console
for a command input. Test the disk write operation by typing

SAVE 1 X.COM
(recall that all commands must be followed by a carriage return).
CP/M should respond with another prompt (after several disk accesses):
A>
If it does not, debug your disk write functions and retry.
(12). Then test the directory command by typing
DIR
CP/M should respond with
A: X COM
(13) Test the erase command by typing

ERA X.COM

(All Information Contained Herein is Proprietary to Digital Research.)

3

CP/M should respond with the A prompt. When you make it this far, you
should have an operational system which will only require a bootstrap
loader to function completely.

(14) Write a bootstrap loader which is similar to GETSYS, and
place it on track ¥, sector 1 using PUTSYS (again using the test
diskette, not the distribution diskette). See Sections 5 and 8 for
more information on the bootstrap opé{ation.

(15) Retest the new test diskette with the bootstrap 1loader
installed by executing steps (11), (12), and (13). Uvpon completion of
these tests, type a control-C (control and C keys simultaneously). The
system should then execute a "warm start” which reboots the system,
and types the A prompt.

(16) At this point, you probably have a good version of vyour
customized CP/M system on your test diskette. Use GETSYS to load CP/M
from vyour test diskette, Remove the test diskette, place the
distribution diskette (or a legal copy) into the drive, and use PUTSYS
to replace the distribution version by your customized version. Do
not make this replacement if you are unsure of your patch since this
-step destroys the system which was sent to you from Digital Research.

(17) Load your modified CP/M system and test it by typing
DIR
CP/# should respond with a list of files which are ©provided on the
initialized diskette, One such file should be the memory image for
the debugger, called DDT.COM.
NOTE: from now on, it is important that you always reboot the CP/M
system (ctl-C is sufficient) when the diskette is removed and replaced

by another diskette, unless the new diskette is to be read only,

(18) Load and test the debugger by typing

DDT
(see the document "CP/M Dynamic Debugging Tool (DDT)" for operating
procedures, You should take the time to become familiar with DDT, it

will be your pest friend in later steps.

(1Y) Before making further CBIOS mnodifications, practice wusing
the editor (see the ED wuser's guide), and assembler (see the ASM
user's guide). Then recode and test the GETSYS, PUTSYS, and CBIOS
programs using ED, ASM, and DDT. Code and test a COPY program which
aoes a sector-to-sector copy from one diskette to another to obtain
back—-up copies of the original diskette (NOTE: read your CP/M
Licensing Agreement; it specifies vyour 1legal responsibilities when
copying the CP/M system). Place the copyright notice

Copyright (c), 1979
Digital Research

(All Information Contained Herein is Proprietary to Digital Research.)

4

on each copy which is made with ybur COPY program,

(20) Modify vyour CBIOS to 1include the extra functions for
punches, readers, signon messages, and so-forth, and add the
facilities for a aaditional disk drives, if desired, You can make
these changes with the GETSYS and PUTSYS programs wnhich vyou have
developed, or vyou can refer to the following section, which outlines
CP/M facilities which will aid you in the regeneration process,

You now have a good copy of the customized CP/M system. Note that
although the CBIOS portion of CP/M which you have develoved belongs to
you, the modified version of CP/M which you have created can be copied
for vyour wuse only (again, read your Licensing Agreement), and cannot
be legally copied for anyone else's use,.

It should be noted that your system remains file-compatible with all

other CP/M systems, (assuming media compatiblity, of course) which
allows transfer of non-proprietary software between users of CP/M.

(All Information Contained Herein is Proprietary to Digital Research.)

5

‘3. SECOND LEVEL SYSTEM GENERATION

Now that you have the CP/M system running, vyou will want to
configure CP/M for your memory size. In general, you will first get a
memory image of CP/M with the "MOVCPM" program (system relocator) and
place this memory image into a named aisk file. The disk file can then
be loaded, examined, patched, and replaced using the debugger, and
system generation oprogram. For further details on the operation of
these programs, see the "Guide to CP/M Features and Facilities"
manual,

Your CBIOS and BOOT can be modified using ED, and assembled using
ASM, producing files called CBIOS.HEX and BOOT.HEX, which contain the
machine code for CBIOS and BOOT in Intel hex format.

To get the memory image of CP/M into the TPA configured for the
desired memory size, give the command:

MOVCPM xx *

where "XxXx" is the memory size in decimal K bytes (e.g., 32 for 32K).
The response will pe:

CONSTRUCTING xxK CP/M VERS 2.0
READY FOR “SYSGEN" OR
"SAVE 34 CPMxx.COM"

At this voint, an image of a CP/M 1in the TPA configured for the
requested memory size, The memory image is at location #98¥H through
227fd. (i,e., The BOOT is at #9998, the CCP is at 986H, the BDOS
starts at 1180H, and the BIOS is at 1lF80H.) Note that the memory
image has the standard MDS-89Y BIOS and BOOT on it. It is now
necessary to save the memory image in a file so that you can patch
your CBIOS and CBOOT into it:

SAVE 34 CPMxx,COM

The memory image created by the "MOVCPM" program is offset by a
negative bias so that it loads into the free area of the TPA, and thus
does not interfere with the operation of CP/M in higher memory. This
memory image can be subsequently loaded under DDT and examined or
changed in preparation for a new generation of the system. DDT is
loaded with the memory image by typing:

DDT CPMxx.COM Load DDT, then read the CP
: image

DDT should respond with
NEXT PC
2308 0169
- (The DDT prompt)

You can then use the display and disassembly commands to examine

(All Information Contained Herein is Proprietary to Digital Research.)

6

portions of the memory image between 90¢H and 227FH. Note, however,
that to find any particular address within the memory image, you must
apply the negative bias to the CP/M address to find the actual
address, Track B9, sector #1 is loaded to location 90UGH (you shoulad
find the cold start loader at 99¥UH to 97FH), track 0@, sector 92 is
"loaded into 980H (this is the base of the CCP), and so-forth through
the entire CP/M system load. In a 20K system, for example, the CCP
- resides at the CP/M address 3400H, but is placed into memory at 980H
by - the SYSGEN program. Thus, the negative bias, denoted by n,
satisfies

3400H + n = 980H, or n = 98YH - 3400H

Assuming two's complement arithmetic, n = D58¥H, which can be checked
by

34008 + D58@H = 10980H = @980H (ignoring high-order
overflow).

Note that for larger systems, n satisfies
(34G0H+b) + n = Y8¥H, or

n 98¢¥H - (3499H + b), or
n D580H - b,

The value of n for common CP/M systems is given below

memory size - bias b negative offset n
20K 300" D58¢H - WVOPYH = D580H
24K la6o4d D589PH - 1000H = C53vH
32K 399¢8 D580H - 3098H = A580H
40K 59 00H D58u¥H - 509Y¥H = 8580H
438K : 7900H D589H - 7006H = 6589H
56K 99 00vH D58¥H - 99@0H = 4589H
62K ABQQH D58VH - A89¢YH = 2D8@H
64K BOGOH D580H - B@YPOH = 2580H

Assume, for example, that you want to locate the address x within the
memory image loaded under DDT in a 20K system. First type

Hx,n Hexadecimal sum and difference
and DDT will respond with the value of x+n (sum) and x-n (difference).
The first number printed by DDT will be the actual memory address in
the image where the data or code will be found. The input

H3400,D580

for example, will produce 98¥H as the sum, which is where the CCP 1is
located in the memory image under DDT.

Use the L command to disassemble portions the BIOS 1located at
(4A00H+D) -n which, when vyou use the H command, produces an actual
address of 1F89H. The disassembly command would thus be

(All Information Contained Herein is Proprietary to Digital Research.)

7

L1F89
It is now necessary to patch in your CBOOT and CBIOS routines. The
BOOT resides at 1location @96#H in the memory image. If the actual
load address is "n*", then to calculate the bias (m) use the command:

H906 ,n . Subtract load address from
target address. ‘

The second number tyved in response to the command is the desired bias
(m). For example, if your BOOT executes at ¥@#80H, the command:

909,80
will reply
PW98Y V8BY Sum and difference in hex.

Therefore, the bias “m” would be 088dH. To read-in the BOOT, give the
command: o ‘

ICBOOT.HEX ‘Input file CBOOT.HEX
Then:
Rm - Read CBOOT with a bias of
m (=904d-n)

You may now examine your CBOOT with:
L9999

We are now ready to replace the CBIOS. Examine the area at 1F80H
where the original version of the CBIOS resides, Then type

ICBIOS.HEX Ready the "hex" file for loading

assume that your CBIOS is pbeing integrated into a 20K CP/M system, and
thus is origined at location 4Ag¢gH. 1In order to properly locate the
CBIOS in the memory image under DDT, we must apply the negative bias n
for a 20K system when loading the hex file. This is accomplished by
typing

RD584 Read the file with bias D580H

Upon completion of the read, re—-examine the area where the CBIOS has
been loaded (use an “L1F86" command), to ensure that is was loaded
properly. When you are satisfied that the change has been made,
return from DDT using a control-C or "G@" command.

Now use SYSGEN to replace the patched memory - image back onto a

diskette (use a test diskette until you are sure of your patch), as
shown in the following interaction '

(All Information Contained Herein is Proprietary to Digital Research.)

8

SYSGEN | . Start the SYSGEN program
SYSGEN VERSION 2.4 Sign-on message from SYSGEN

aOURCE DRIVE NAME (OR RETURN TO SKIP)
Resoond with a carriage return

to skip the CP/M read operation
since the system is already in
- : memory,
DESTINATION DRIVE NAME (OR RETURN TO REBOOT)
: : Respond with "B" to write the
new system to the diskette in
, drive B,
DESTINATION ON B, THEN TYPE RETURN
Place a scratch diskette in
. drive B, then type return.
FUNCTION COMPLETE
DESTINATION DRIVE NAME (OR RETURN TO REBOOT)

Place the scratch diskette in your drive A, and then perform a
coldstart to bring up the new CP/M system you have configured.

Test the new CP/M system, and place the Digital Research copyright
notice on the diskette, as specified in your Licensing Agreement:

Copyright (c), 1979
~Digital Research

4, SAMPLE GETSYS AND PUlSYD PROGRAMS

Tne follow1ng orogram prov1des a framework . for the GETSYS and
PUTSYS - _programs referenced in Section 2. The READSEC and WRITESEC
‘subroutines must be inserted by the user to read and write the
specific sectors, :

GETSYS5 PROGRAM - RbAD TRACKS @ AND 1 TO MEMORY AT 3380H

’
: REGISTER | USE
R (SCRATCH REGISTER)
3 B TRACK COUNT (8, 1)
; c . SECTOR COUNT (1,2,...,26)
; DE '~ (SCRATCH REGISTER PAIR)
; HL, _ LOAD ADDRESS
; sP SET TO STACK ADDRESS
START: LXI SP,3380H ;SET STACK POINTER TO SCRATCH AREA
LXI H, 3380¢H ;SET BASE LOAD ADDRESS
MVI B, @ ;START WITH TRACK 6
RDTRK : ;READ NEXT TRACK (INITIALLY 9)
MvI C,1 ;READ STARTING WITH SECTOR 1
RDSEC: ;READ NEXT SECTOR
CALL READSEC ;USER-SUPPLIED SUBROUTINE
LXI D,128 ;MOVE LOAD ADDRESS TO NEXT 1/2 PAGE
DAD D ;HL = HL + 128
INR C ;SECTOR = SECTOR + 1
MOV A,C ;CHECK FOR END OF TRACK
cPI 27
Jc RDSEC ;CARRY GENERATED IF SECTOR < 27
4
; ARRIVE HERE AT END OF TRACK, MOVE TO NEXT TRACK
INR B
MOV A,B ;TEST FOR LAST TRACK
CPI 2
Jc RDTRK ;CARRY GENERATED IF TRACK < 2

e weo

ARRIVE HERE AT END OF LOAD, HALT FOR NOW
HLT

USER-SUPPLIED SUBROUTINE TO READ THE DISK
EADSEC:
ENTER WITH TRACK NUMBER IN REGISTER 8,
SECTOR NUMBER IN REGISTER C, AND
ADDRESS TO FILL IN HL

e wo we “wo w~o ~e

pPUSH B ;SAVE B AND C REGISTERS
PUSH H ;SAVE HL REGISTERS

® © 6 6 0 0 0 0% G0 000 0O OO NS OO0 OO e eSS L e eI LEETGE

perform disk read at this point, branch to

label START if an error occurs

® 0 % % 0 00 000" C 0PGSO O LSS O ST OB S0 S S SO E SO

POP H s RECOVER HL
POP B sRECOVER B AND C REGISTERS
RET +BACK TO MAIN PROGRAM

END START

(All Information Contained Herein is Proprietary to Digital Research.)

19

Note that this program is assembled and listed in Appendix C for
reference purposes, with an assumed origin of 1d@H. The hexadecimal
operation codes which are listed on the left may be wuseful if the
program has to be entered through your machine's front panel switches.

The PUTSYS program can be constructed from GETSYS by changing only
a few operations in the GETSYS program given above, as shown in
Appendix D. The register wvpair HL become the dump address (next
address to write), and operations upon these registers do not change
within the program. The READSEC subroutine is replaced by a WRITESEC
subroutine which performs the oppoosite function: data from address HL
is written to the track given by register B and sector given by
register C. It is often useful to combine GETSYS and PUTSYS into a
single program during the test and development phase, as shown in the
Appendix.

(A1l Information Contained Herein is Proprietary to Digital Research.)

11

5. DISKETTE ORGANIZATION

The sector allocation for the standard distribution version of
CP/M 1s given here for reference purposes. The first sector (see
table on the following page) contains an optional software boot
section, Disk controllers are often set uo to bring track 0, sector 1
into memory at a specific 1location (often 1location U@0GH). The
program in this sector, called BOOT, has the responsibility of
bringing the remaining sectors into memory starting at location
34¢@H+b. If your controller does not have a built-in sector load, you
can ignore the program in track ¢, sector 1, and begin the 1load from
track ¥ sector 2 to location 3499H+Db.

As an example, the Intel MDS-800 hardware cold start loader brings
track B, sector 1 into absolute address 3006H. Upon 1loading this
sector, control transfers to location 3800@dH, where the bootstrap
operation commences by loading the remainder of tracks 4, and all of
track 1 into memory, starting at 34@6H+b., The user should note that
this bootstrap loader is of 1little wuse in a non-MDS environment,
although it is wuseful to examine it since some of the boot actions
will have to be duplicated in your cold start loader,

(A1l Information Contained Herein is Proprietary to Digital Research.)

12

Track# Sector# Page# Memory Address CP/M Module name

Ao 01 (boot address) Cold Start Loader
b0 32 09 340 94+b Cccp
. B3 " 3480H+Db .

o g4 g1 350840H+b ”

. g5 " 358UH+b "

. J6 B2 36080H+D .

" 87 " 3680H+Db "

" a8 03 3786¥H+p .

" 69 " 3780H+b .

" 10 g4 3800H+b .

" 11 . 388¥H+Db "

" 12 45 3900Hd+b "

" 13 . 3980H+b "

" 14 b6 3A03H+b .

" 15 " 3A8@H+b "

. 16 37 3By 0H+b .
Y 17 " 3B8gH+b CCp
J9 18 78 3CdgH+b BDOS

o 19 " 3C80H+b .

" 20 29 3D0YH+b -

b 21 " 3D8@GH+b "

. 22 10 3EJ@d+b .

" 23 " 3E80H+b "

" 24 11 3FdQH+b o

" 25 " 3F80H+b .

. 26 12 4300H+Db "
21 H1 " 4980H+Db .

" 22 13 4130H+b .

. g3 " 4180H+b B

" g4 14 42034d+b "

" 25 . 4280H+Db .

" 26 15 ’ 4309H+b "

" 37 . 4380H+Db ”

" @8 16 4408Hd+b .

" 09 - 4480H+b "

. 13 17 450 3H+b .

" 11 " 4589H+Db .

" 12 18 4600H+b .

" 13 . 4689H+b "

" 14 19 47060H+b “

" 15 " 4780H+b "

. 16 20 48@0H+Db "

“ 17 " 4880H+b "

. 18 21 49¢0H+b .

g1 19 " 4980H+b BDOS

21 20 22 4AQ0H+b BIOS

. 21 » 4A80H+b "

“ 23 23 4B@PH+b "

. 24 " 4B8PH+Db .

o 25 24 4CO0H+b "

g1 26 b 4C8@H+b BIOS

22-76 @1-26 (directory and data)

(All Information Contained Herein is Proprietary to Digital Research.)

6. THE BIOS ENTRY POINTS

The entry points into the BIOS from the cold start loader and BDOS
are detailed below., Entry to the BIOS is through a "jump vector"
located at 4Ad9H+b, as shown below (see Appendices B and C, as well).
The jump vector is a sequence of 17 jump instructions which send
program control to the individual BIOS subroutines. The BIOS
subroutines may. be empty for certain functions (i.e., they may contain
a single RET operation) during regeneration of CP/M, but the entries
must be present in the jump vector,

The jump vector at 4AUQH+b takes the form shown below, where the
individual jump addresses are given to the left:

ARRIVE HERE FROM COLD START LOAD
ARRIVE HERE FOR WARM START

CHECK FOR CONSOLE CHAR READY
READ CONSOLE CHARACTER IN

WRITE CONSOLE CHARACTER OUT
WRITE LISTING CHARACTER OUT
WRITE CHARACTER TO PUKCH DEVICE
READ READER DEVICE

MOVE TO TRACK 90 ON SELECTED DISK
SELECT DISK DRIVE

SET TRACK NUMBER

SET SECTOR NUMBER

SET DMA ADDRESS

READ SELECTED SECTOR

WRITE SELECTED SECTOR

RETURN LIST STATUS

SECTOR TRANSLATE SUBROUTINE

4AGPH+D JMP BOOT
470 3d+Db JMP WBOOT
427 6d+b JMP CONST
4AP9H+b JMP CONIN
4AQCH+D JMP CONOUT
4APFH+Db JMP LIST
4A12H+b JMP PUNCH
4A15H+Db JMP READER
4A18H+b JMP HOME
4A1BH+b JHMP SELDSK
4A1EH+D JMP SETTRK
4A21H+D JMP SETSEC
4A24H+Db JMP SETDMA
- 4A27H+b JMP READ
4A2AH+D JMP WRITE
4A2DH+Db JMP LISTST
4A390H+b JMP SECTRAN

WO NS NG NG NG WO ME WE WE WO WO WO We W& we we o

~ Bach jump address corresponds to a particular subroutine which
performs the specific function, as outlined below. There are three
major divisions in the jump table: the system (re)initialization
which results from calls on BOOT and WBOOT, simple character I/0
performed by calls on CONST, CONIN, CONOUT, LIST, PUNCH, READER, and
LISTST, and diskette I/0 verformed by calls on HOME, SELDSK, SETTRK,
SETSEC, SETDMA, READ, WRITE, and SECTRAN.

All simple character I/0 operations are assumed to be performed in
ASCII, upper and lower case, with high order (parity bit) set to zero.
An end-of-file condition for an input device is given by an ASCII
control-z (lAH)., Peripheral devices are seen by CP/M as “logical"®
devices, and are assigned to physical devices within the BIOS.

In order to operate, the BDOS needs only the CONST, CONIN, and
CONOUT subroutines (LIST, PUNCH, and READER may be used by PIP, but
not the BDOS). Further, the LISTST entry is used currently only by
DESPOOL, and thus, the initial version of CBIOS may have empty
subroutines for the remaining ASCII devices, ‘

k(All Information Contained Herein is Proprietary to Digital Research.)

14

The characteristics of each device are

CONSOLE The principal interactive console which communicates
- with the operator, accessed through CONST, CONIN, and
CONOUT. Typically, the CONSOLE is a device such as a

CRT or Teletype.

LIST The principal listing device, if it exists on vyour
system, which is usually a hard-copy device, such as a
printer or Teletype,

PUNCH The principal tape punching device, if it exists, which
is normally a high-speed paper tape punch or Teletype.

READER The principal tape reading device, such as a simple
optical reader or Teletype, '

Note that a single peripheral can be assigned as
the LIST, PUNCH, and READER device simultaneously. If
no peripheral device is assigned as the LIST, PUNCH, or
READER device, the CBIOS created by the user may give
an - appropriate error message soO that the system does
not "hang" if the device is accessed by PIP or some
other user oprogram, Alternately, the PUNCH and LIST
routines can just simply return, and the READER routine
can return with a 1AH (ctl-Z2) " in reg A to indicate
immediate end-of-file,

For added flexibility, the wuser can ovotionally
implement the "IOBYTE" function = which allows
reassignment of physical and 1logical devices. The
IOBYTE function creates a mapping of logical to
physical devices which can be altered during CP/M
processing (see the STAT commanc). The definition of
the IOBYTE function corresponds to the Intel standard
as follows: a single location in memory (currently

" location ©¥@P3H) is maintained, called IOBYTE, which
defines the logical to physical device mapping which is
'in effect at a particular time. The mapping is
"performed by splitting the IOBYTE into four distinct
tields of two bits each, called the CONSOLE, READER,
PUNCH, and LIST fields, as shown below:

most significant ' least significant

IOBYTE AT ©0@@3# | LIST | PUNCH | READER | CONSOLE |

bits 6,7 bits 4,5 bits 2,3 bits 0,1
The value in each field can be in the range -3,
defining the assigned source or-destination of each

logical device, The values which can be assigned to
each field are given below :

(All Information Contained Herein is Proprietary to Digital Research,)

15

CONSOLE field (bits 0,1)

g =
1 -
2 -
3 -
READE
g
1 -
2 -
3 -

console is ass1gned to ‘the console printer device (TTY:)
console is assigned to the CRT dev1ce (CRT:)

batch mode: use the READER as the CONSOLE input,

and the LIST device as the CONSOLE output (BAT:)

user defined console device -(UCl:)

R fleld (blts 2,3)

READER is - the Teletype dev1ce (TTY)

READER is the high-speed reader device (RDR:)
user defined reader # 1 (URl:)

user defined reader # 2 (UR2:)

PUNCH field (bits 4,5)

PUNCH is the Teletype device (TTY:)

PUNCH is the high speed punch device (PUN:)
user defined punch # 1 (UPl:)

user defined punch # 2 (Up2:)

LIST fleld (bltS 6,7)

LIST is the Teletype dev1ce (TTY)
LIST is the CRT device (CRT:) '

LIST is the line printer device (LPT:)
user defined list device (ULl:)

Note again that the implementation of the IOBYTE is
optional, and affects only the organization of vyour
CBIOS. No CP/M systems use the IOBYTE (although they
tolerate the existence of the IOBYTE at location
¥vv3d), except for PIP which allows access to the

physical devices, - and = STAT which allows
logical-physical assignments to be made and/or
displayed (for more information, see the "CP/M Features
and Facilities Guide"). = In any case, the IOBYTE

implementation should be omitted until your basic CBIOS
is fully implemented and tested; then add the IOBYTE to
increase your facilities,

Disk I/O is always performed through a seguence of
calls on the various disk access subroutines which set
up the disk number to access, the track and sector on a
particular disk, and the direct memory access (DMA)
address involved in the I/0 operation, After all these
parameters have been set up, a call is made to the READ
or WRITE function to perform the actual I/O operation.
Note that there is often a single call to SELDSK to
select a disk drive, followed by a number of read or
write operations to the selected disk before selecting
another drive for subsequent operations. Similarly,
there may be a single call to set the DMA address,
followed by several calls which read or write from the
selected DMA address pbefore the DMA address is changed.
The track and sector subroutines are always called
before the READ or WRITE operations are performed.

(All Information Contained Herein is Proprietary to Digital Research.)

16

Note that the READ and WRITE routines should
perform several retries (18 is standardqd) before
reporting the error condition to the BDOS. 1If the

- error condition is returned to the BDOS, it will report
the error to the user. The HOME subroutine may or may
not actually perform the track 60 seek, depending upon
your controller characteristics; the important voint is
that track U0 has been selected for the next operation,
and is often treated in exactly the same manner as
SETTRK with a parameter of 96.

The exact responsibilites of eacn entry point
subroutine are given below:

BOOT The BOOT entry point gets control from the cold start
loader and 1is responsible for basic system
initialization, including sending a signon message
(which can be omitted in the first version). If the
IOBYTE function is implemented, it must be set at this
point., The various system parameters which are set by
the WBOOT entry point must be initialized, and control
is transferred to the CCp at 3400H+b for further
processing, Note that reg C must be set to =zero to
select drive A.

WwBOOT The WBOOT entry point gets control when a warm start
occurs., A warm start 1is performed whenever a user
program branches to location @@30H, or when the CPU is
reset from the front panel. The CP/M system must bDbe
loaded from the first two tracks of drive A up to, but
not including, the BIOS (or CBIOS, 1if vyou have
completed your patch). System parameters must be ini-
tialized as shown below:

location 4,1,2 set to JMP WBOOT for warm starts
_ (doBoH: TMP 4AQ3H+Db)

location 3 set initial value of IOBYTE, 1if
implemented in your CBIOS

location 5,6,7 set to JMP BDOS, which is the
primary entry point to CP/M for
transient programs. (006@5H: JMP
3C@6H+Db)

-~ (see Section 9 for complete details of page zero use)
Upon completion of the initialization, the WBOOT
program must branch to the CCP at 34d9dH+b to (re)start
the system. Upon entry to the CCP, register C 1is set
to the drive to select after system initialization.

CONST Sample the status of the currently assigned console
device and return @FFH in register A if a character is
ready to read, and @0H in register A if no console
characters are ready.

CONIN Read the next console character into register A, and

(All Information Contained Herein is Proprietary to Digital Research.)

17

set the parity opit (high order bit) to zero. If no
console character is ready, wait until a character 1is
typed pefore returning,

CONOUT Send the character from register C to the console
output device, The character is in ASCII, with high
order parity bit set to zero, You may want to include
a time-out on a line feed or carriage return, if vyour
console device requires some time interval at the end
of the line (such as a TI Silent 7606 terminal). You
can, 1f you wish, filter out control characters which
cause your console device to react in a strange way (a
control-z causes the Lear Seigler terminal to clear
the screen, for examvole).

LIST Send the character from register C to the currently
assigned 1listing device, The character is in ASCII
with zero parity.

PUNCH Send the character from register C to the currently
assigned punch device. The character is in ASCII with
zZero parity.

READER Read the next character from the currently assigned
reader device 1into register A with zero parity (high
order bit must be zero), an end of file <condition 1is
reported by returning an ASCII control-z (1lAH).

HOME - Return the disk head of the currently selected disk
(initially disk A) to the track 60 position. If your
controller allows access to the track ¥ flag from the
drive, step the head until the track ¥ flag is
detected., If your controller does not support this
feature, vyou can translate the HOME call into a call
on SETTRK with a pvarameter of @.

SELDSK Select the disk drive given by register C for further
operations, where register C contains @ for drive A, 1
for drive B, and so-forth up to 15 for drive P (the
standard CP/M distribution version supports four
drives)., On each disk select, SELDSK must return 1in
HL the base address of a 1l6-byte area, called the Disk
Parameter Header, described in the Section 18. For
standard floppy disk drives, the contents of the
header and associated tables does not change, and thus
the program segment included in the sample CBIOS
performs this operation automatically. If there is an
attempt to select a non-existent drive, SELDSK returns
HL=0@6PH as an error indicator, Although SELDSK must
return the header address on each «call, it is
advisable to postpone the actual physical disk select
operation until an I/0 function (seek, read or write)
is actually performed, since disk selects often occur
without utimately performing any disk I/0, and many
controllers will unload the head of the current disk

(All Information Contained Herein is Proprietary to Digital Research.)

18

before selecting the new drive. This would cause an
excessive amount of noise and disk wear,

SETTRK Register BC contains the track number for subseguent
disk accesses on the currently selected drive. You
can choose to seek the selected track at this time, or
delay the seek until the next read or write actually
occurs, Register BC can take on values in the range
¥-76 corresponding to valid track numbers for standard
floppy disk drives, and #-65535 for non-standard disk
subsystems.

SETSEC Register BC contains the sector number (1 through 26)
for subseguent disk accesses on the currently selected
drive., You can choose to send this information to the
controller at this point, or instead delay sector
selection until a read or write operation occurs.

SETDMA Register BC contains the DMA (disk memory access)
address for subseguent read or write operations. For
example, if B = ¢gH and C = 80H when SETDMA is called,
then all subseguent read operations read their data
into 8@#H through @FFH, and &all subsequent write
operations get their data from 8¢il through @FFH, until

~the next call to SETDMA occurs, The initial DMA

address is assumed to be 8UH. Note that the
controller need not actually support direct memory
access, If, for example, all data is received and

sent through I/0 ports, the CBIOS which you construct
will wuse the 128 byte area starting at the selected
DMA address for the memory buffer during the following
read or write operations,

READ Assuming the drive has been selected, the track has
been set, the sector has been set, and the DMA address
has been specified, the READ subroutine attempts to
read one sector based upon these parameters, and
returns the following error codes in register A:

1] no errors occurred
1 non-recoverable error condition occurred

Currently, CP/M responds only to a =zero oOr non-zero
value as the return code, That is, if the value in
register A is @ then CP/M assumes that the disk
operation completed vproperly. If an error occurs,
however, the CBIOS should attempt at least 16 retries
to see 1if the error is recoverable. When an error is
reported the B8D0OS will print the message "BDOS ERR ON
X3 BAD SECTOR". The operator then has the option of
typing <cr> to ignore the error, or ctl-C to abort.

WRITE Write the data from the currently selected DMA address

to the currently selected drive, track, and sector,
The data should be marked as "non deleted data" to

(All Information Contained Herein is Proprietary to Digital Research.)

19

maintain compatibility with other CP/M systems, The
error codes given in the READ command are returned in
register A, with error recovery attempts as described
above. 1

LISTST Return the ready status of the list device. Used by
the DESPOOL program to improve console response during
its operation, The value @¥ is returned in A if the
list device is not ready to accept a character, and
@FFH 1if a character can be sent to the printer, Note
that a 68 value always suffices,

SECTRAN Performs sector logical to physical sector translation
in order to improve the overall response of CP/M.
Standard CP/M systems are shipved with a “skew factor®
of 6, where six physical sectors are skipped between
each logical read operation, This skew factor allows
enough time between sectors for most programs to load
their buffers without missing the next sector, In

" particular computer systems which use fast processors,
memory, and disk subsystems, the skew factor may be
changed to improve overall response, Note, however,
that you should maintain a single density IBM
compatible version of CP/M for information transfer
into and out of your computer system, using a skew
factor of 6. In general, SECTRAN receives a logical
sector number in BC, and a translate table address 1in
DE. The sector number is used as an index into the
translate tapble, with the resulting physical sector
number in HL. For standard systems, the tables and
indexing code is provided in the CBIOS and need not be
changed.

(All Information Contained Herein is Proprietary to Digital Research.)

29

7. A SAMPLE BIOS

The program shown in Appendix C can serve as a basis for your
first BIOS. The simplest functions are assumed in this BIOS, so that
you can enter it through the front wvanel, if absolutely necessary.
Note that the user must alter and insert code into the subroutines for
CONST, CONIN, CONOUT, READ, WRITE, and WAITIO subroutines, Storage is
reserved for user-supplied code in these regions. The scratch area
reserved in page zero (see Section 9) for the BIOS 1is wused in this
program, so that it could be implemented in ROM, if desired.

Once operational, this skeletal version can be enhanced to print
the initial sign-on message and perform better error recovery. The

subroutines for LIST, PUNCH, and READER can be filled-out, and the
IOBYTE function can be implemented.

(All Information Contained Herein is Proprietary to Digital Research.)

21

8, A SAMPLE COLD START LOADER

The program shown in Appendix D can serve as a basis for your cold
start loader. The disk read function must be supplied by the user,
ana the program must be loaded somehow starting at location 6000,
Note that space is reserved for your patch so that the total amount of
storage required for the cold start loader is 128 bytes. Eventually,
you will probably want to get this loader onto the first disk sector
(track ©, sector 1), and cause your controller to load it into memory
automatically wupon system start-up. Alternatively, you may wish to
place tne cold start loader into ROM, and place it above the CP/M
system, In this case, it will be necessary to originate the program
at a higher address, and key-in a jump instruction at system start-up
which branches to the loader. Subsequent warm starts will not require
this key-in operation, since the entry point 'WBOOT' gets control,
thus bringing the system in from disk automatically. Note also that
the skeletal cold start loader has minimal error recovery, which may
be enhanced on later versions.

(A1l Information Contained Herein is Proprietary to Digital Research.,)

22

9. RESERVED LOCATIONS IN PAGE ZERO

Main memory page zero, between locations @@H and @UFFH, contains
several segments of code and data which are wused during CP/H
processing., The code and data areas are given below for reference
purposes.

Locations Contents
from to
pooobd - VOOB2H Contains a jump instruction to the warm start

entry point at location 4A@3H+b. This allows a
simple programmed restart (JMP @J@0%H) or manual
restart from the front panel.

WB0B3H - 0003H Contains the Intel standard IOBYTE, which 1is
optionally included in the wuser's CBIOS, as
described in Section 6.

0dB4d

V0941 Current default drive number (#=A,....,15=P).

@005H Bog74 Contains a Jjump instruction to the B8DO0S,and
serves two purposes: JMP @@65H provides the
primary entry point to the BDOS, as described in
the manual "CP/M Interface Guide," and LHLD
GYWP6H brings the address field of the
instruction to the HL register pair, This value
is the 1lowest address in memory used by CP/M
(assuming the CCP is being overlayed). Note
that the DDT program will change the address
field to reflect the reduced memory size in
debug mode.

003 - 00274 (interrupt locations 1 through 5 not used)

po3¢d - G037H (interrupt location 6, not currently used -
reserved)

PO38H - 0O3AH Restart 7 - Contains a jump instruction into the
DDT or SID program when running in debug mode
for programmed breakpoints, but is not otherwise
used by CP/M.

@23BH - GO3FH (not currently used - reserved)

0U40d - VO4FH 16 byte area reserved for scratch by CBIOS, but
is not used for any purpose in the distribution
version of CP/M

BO50H - YUSBH (not currently used - reserved)

@go5CH - 007CH default file <control block produced for a
transient program by the Console Command

Processor,

@0 7DH

@OTFH Optional default random record position

(All Information Contained Herein is Proprietary to Digital Research.)

23

980 - QOFFH default 1238 byte disk buffer (also filled with
the command 1line when a transient is loaded
under the CCP).

Note that this information is set-up for normal operation under
the CpP/M system, but can be overwritten by a transient program if the
BDOS facilities are not reguired by the transient.

If, for example, a particular program performs only simple I/0 and
must begin execution at location ¥, it can be first 1loaded into the
ITPA, wusing normal CP/M facilities, with a small memory move program
which gets control when loaded (the memory move program must get
control from location @1@6H, which is the assumed beginning of all
transient programs). The move prodram can then proceed to move the
entire memory image down to location %, and pass control to the
starting address of the memory loaa. dote that 1if the BIOS 1is
overwritten, or if location 6§ (containing the warm start entry point)
is overwritten, then the programmer must bring the CP/M system back
into memory with a cold start seguence,

(All Information Contained Herein is Proprietary to Digital Research.)

24

10. DISK PARAMETER TABLES.

Tables are included in the BIOS which describe the particular
characteristics of the disk subsystem used with CP/M. These tables
can be either hand-coded, as shown in the sample CBIOS in Appendix C,
or automatically generated using the DISKDEF macro library, as shown
in Appendix B, The purpose here is to describe the elements of these
tables.

In general, each disk drive has an associated (l6-byte) disk
parameter header which both contains information about the disk drive
and provides a scratchpad area for <certain BDOS operations. The
format of the disk parameter header for each drive is shown below

Disk Parameter Header
| XLT | 0000 | 0060 | 90600 |IDIRBUF| DPB | Csv | ALV |
16b 16b 16b 16b 16b 16b 16b 16b

where each element is a word (16-bit) value., The meaning of each Disk
Parameter Header (DPH) element is

XLT Address of the logical to physical translation vector,
if used for this particular drive, or the value 0000H
if no sector translation takes place (i.e, the physical
and logical sector numbers are the same), Disk drives
with identical sector skew factors share the same
translate tables,

0000 Scratchpad values for use within the BDOS (initial
value is unimportant),
DIRBUF Address of a 128 byte scratchpad area for directory

operations within BDOS. All DPH's address the same
scratchpad area,. .

DPB Address of a disk parameter block for this drive,
Drives with identical disk characteristics address the
same disk parameter block.

Csv Address of a scratchpad area used for software check
for changed disks, This address is different for each
DPH.

ALV Address of a scratchpad area used by the BDOS to keep

disk storage allocation information., This address is
different for each DPH,

Given n disk drives, the DPH's are arranged in a table whose first row

of 16 bytes corresponds to drive @, with the last row corresponding to
drive n-1, The table thus appears as

(All Information Contained Herein is Proprietary to Digital Research.)

25

DPBASE:

g0 |XLT 00| 0000 | 0000 | 9000 |DIRBUF|DBP 90ICSV 00 |ALV 00|

21 |XLT 61| 0000 | 0000 | 0000 |DIRBUFI|DBP @1|CSV ¥1|ALV 01|

n-1|XLTn-1| 90600 | 0008 | 0006 |DIRBUF|DBPn-1|CSVn-1|ALVn-1]|

where the label DPBASE defines the base address of the DPH table.

A responsibility of the SELDSK subroutine is to return the base
address of the DPH for the selected drive. The following sequence of
operations returns the table address, with a @000H returned 1if the
selected drive does not exist.

NDISKS EQU 4 ;NUMBER OF DISK DRIVES
SELDSK:
;SELECT DISK GIVEN BY BC
LXI H,0000H ;ERROR CODE
MOV A,C :DRIVE OK?
CpPI NDISKS ;CY IF SO
RNC sRET IF ERROR
:NO ERROR, CONTINUE
MOV L,C : LOW (DISK)
MOV H,B sHIGH(DISK)
DAD H ;%2
DAD H ;%4
DAD H : %8
DAD H :*16
LXI D,DPBASE ;FIRST DPH
DAD D :DPH (DISK)
RET

The translation vectors (XLT @@ through XLTn-1l) are located
elsewhere in the BIOS, and simply correspond one-for-one with the
logical sector numbers zero through the sector count-1, The Disk
Parameter Block (DPB) for each drive is more complex. A particular
DPB, which is addressed by one or more DPH's, takes the general form

S D S A —— - —— - — - - . T S —— D —— - ———— — T —_— - —————— - — — - ———————

'16b 8b 8b 8b 16b 16b 8b 8b 16b 16b

where each is a byte or word value, as shown by the "8b" or "16b"
indicator below the field.

SPT is the total number of sectors per track
BSH is the data allocation block shift factor, determined
by the data block allocation size.
(All Information Contained Herein is Proprietary to Digital Research,)

26

EXM is the extent mask, determined by the data block
aliocation size and the number of disk blocks.

DSM determines the total storage capacity of the disk drive

DRM determines the total number of directory entries which
can be stored on this drive AL@,AL]l determine reserved
directory blocks,

CKS is the size of the directory check vector

OFF is the number of reserved tracks at the beginning of
the (logical) disk.

The values of BSH and BLM determine (implicitly) the data allocation
size BLS, which 1is not an entry in the disk parameter block. Given
that the designer has selected a value for BLS, the values of BSH and
BLM are shown in the table below

BLS BSH BLM
1,024 3 7
2,048 4 15
4,096 5 31
8,192 6 63

l6,384 7 127

where all values are in decimal., The value of EXM depends upon both
the BLS and whether the DSM value is less than 256 or greater than
255, as shown in the following table

BLS DSM < 256 DSM > 255
1,024 0 N/A
2,048 1]
4,096 3 1
8,192 7 3

5 7

16,384 1

The value of DSM is the maximum data block number supported by
this particular drive, measured in BLS units, The product BLS times
(DSM+1) is the total number of bytes held by the drive and, of course,
must be within the capacity of the physical disk, not counting the
reserved operating system tracks,

The DRM entry is the one less than the total number of directory
entries, which can take on a 16-bit value., The values of AL® and ALl,
however, are determined by DRM. The two values AL# and ALl can
together be considered a string of 16-bits, as shown below.

(All Information Contained Herein is Proprietary to Digital Research.)

217

02 01 02 93 04 05 06 07 68 09 14 11 12 13 14 15

where position 00 corresponds to the high order bit of the byte
labelled AL#, and 15 corresponds to the low order bit of the byte
labelled ALl. Each bit position reserves a data block for number of
directory entries, thus allowing a total of 16 data blocks to be
assigned for directory entries (bits are assigned starting at 66 and
filled to the right until position 15). Each directory entry occupies
32 bytes, resulting in the following table

BLS Directory Entries
1,024 32 times # bits
2,048 64 times # Dbits
4,096 128 times # bits
8,192 256 times # Dbits

16,384 512 times # Dbits

Thus, if DRM = 127 (128 directory entries), and BLS = 1024, then there
are 32 directory entries per block, reguiring 4 reserved blocks, In
this case, the 4 high order bits of AL# are set, resulting in the
values AL# = @FOH and ALl = @0H,

The CKS value is determined as follows: if the disk drive media
is removable, then CKS = (DRM+l)/4, where DRM is the 1last directory
entry number, If the media is fixed, then set CKS = @ (no directory
records are checked in this case).

Finally, the OFF field determines the number of tracks which are
skipped at the beginning of the physical disk. This wvalue is
automatically added whenever SETTRK is called, and can be used as a
mechanism for skipping reserved operating system tracks, or for
partitioning a large disk into smaller segmented sections.

To complete the discussion of the DPB, recall that several DPH's
can address the same DPB if their drive characteristics are identical.
Further, the DPB can be dynamically changed when a new drive is
addressed by simply changing the pointer in the DPH since the BDOS
copies the DPB values to a local area whenever the SELDSK function is
invoked,

Returning back to the DPH for a particular drive, note that the
two address values CSV and ALV remain., Both addresses reference an
area of uninitialized memory following the BIOS. The areas must be
unigue for each drive, and the size of each area is determined by the
values in the DPB.

The size of the area addressed by CSV is CKS bytes, which 1is
sufficient to hold the directory check information for this particular
drive, If CKS = (DRM+1l)/4, then you must reserve (DRM+l1l)/4 bytes for
directory check use, If CKS = @, then no storage is reserved.

(All Information Contained Herein is Proprietary to Digital Research.)

28

The size of the area addressed by ALV 1is determined by the
maximum number of data blocks allowed for this particular disk, and is
computed as (DSM/8)+1.

The CBIOS shown in Appendix C demonstrates an instance of these

tables for standard 8" single density drives., It may be useful to

examine this program, and compare the tabular values with the
definitions given above,

(All Information Contained Herein is Proprietary to Digital Research.)

29

11. THE DISKDEF MACRO LIBRARY,

A macro library is shown in Appendix F, called DISKDEF, which
greatly simplifies the table construction process., You must have
access to the MAC macro assembler, of course, to use the DISKDEF
facility, while the macro 1library 1is included with all CP/M 2.0
distribution disks.,

A BIOS disk definition consists of the following sequence of
macro statements:

MACLIB DISKDEF
DISKS n
DISKDEF 0,...
DISKDEF 1,...

DISKDEF n-1

ENDEF

where the MACLIB statement loads the DISKDEF.LIB file (on the same
disk as your BIOS) into MAC's internal tables, The DISKS macro call
follows, which specifies the number of drives to be configured with
your system, where n is an integer in the range 1 to 16. A series of
DISKDEF macro calls then follow which define the <characteristics of
each logical disk, @ through n-1 (corresponding to logical drives A
through P). Note that the DISKS and DISKDEF macros denerate the
in-line fixed data tables described in the previous section, and thus
must be placed in a non-executable portion of your BIOS, typically
directly following the BIOS jump vector.

- The remaining portion of your BIOS is defined following the
DISKDEF macros, with the ENDEF macro call immediately preceding the
END statement, The ENDEF (End of Diskdef) macro generates the
necessary uninitialized RAM areas which are located in memory above
your BIOS.

The form of the DISKDEF macro call is

DISKDEF dn,fsc,lsc,[skf],bls,dks,dir,cks,ofs, [@]

where
dn is the logical disk number, 6 to n-1
fsc is the first physical sector number (@ or 1)
1sc is the last sector number
skf is the optional sector skew factor
bls is the data allocation block size
dir is the number of directory entries
cks is the number of "checked" directory entries
ofs is the track offset to logical track @0
(0] is an optional 1.4 compatibility flag

The value "dn" is the drive number being defined with this DISKDEF

(All Information Contained Herein is Proprietary to Digital Research.)

30

macro invocation. The “"fsc" parameter accounts for differing sector
numbering systems, and is usually @ or 1. The "lsc" 1is the last
numbered sector on a track. When present, the "skf" parameter defines
the sector skew factor which is used to create a sector translation
table according to the skew, If the number of sectors 1is 1less than
256, a single-byte table is created, otherwise each translation table
element occupies two bytes, No translation table is created if the
skf parameter is omitted (or equal to @). The "bls" parameter
specifies the number of bytes allocated to each data block, and takes
on the wvalues 1024, 2048, 4096, 8192, or 16384, Generally,
performance increases with larger data block sizes since there are
fewer directory references and logically connected data records are
physically close on the disk., Further, each directory entry addresses
more data and the BIOS-resident ram space is reduced. The "dks"
specifies the total disk size in "bls" units. That is, if the bls =
2048 and dks = 1000, then the total disk capacity is 2,048,000 bytes,
If dks is greater than 255, then the block size parameter bls must be
greater than 1024, The wvalue of "dir" 1is the total number of
directory entries which may exceed 255, if desired. The "“cks"
parameter determines the number of directory items to check on each
directory scan, and is used internally to detect changed disks during
system operation, where an intervening cold or warm start has not
occurred (when this situation is detected, CP/M automatically marks
the disk read/only so that data is not subsequently destroyed). As
stated in the previous section, the value of cks = dir when the media
is easily changed, as is the case with a floppy disk subsystem, If
the disk is permanently mounted, then the value of cks is typically @,
since the probability of changing disks without a restart is aquite
low. The "“ofs" value determines the number of tracks to skip when
this particular drive is addressed, which <can be used to reserve
additional operating system space or to simulate several logical
drives on a single large capacity physical drive, Finally, the [0]
parameter 1is included when file compatibility is reguired with
versions of 1.4 which have been modified for higher density disks.
This parameter ensures that only 16K is allocated for each directory
record, as was the case for previous versions. Normally, this
parameter is not included.

For convenience and economy of table space, the special form
DISKDEF i,]
gives disk i the same characteristics as a previously defined drive j.

A standard four-drive single density system, which is compatible with
version 1,4, is defined using the following macro invocations:

(A1l Information Contained Herein is Proprietary to Digital Research.)

31

DISKS 4
DISKDEF 0,1,26,6,1024,243,64,64,2
DISKDEF 1,0 :

DISKDEF 2,0

DISKDEF 3,0

ENDEF

with all disks having the same parameter values of 26 sectors per
track (numbered 1 through 26), with 6 sectors skipped between each
access, 1024 bytes per data block, 243 data blocks for a total of 243k
byte disk capacity, 64 checked directory entries, and two operating
system tracks,

The DISKS macro generates n Disk Parameter Headers (DPH's),
starting at the DPH table address DPBASE generated by the macro. Each
disk header block contains sixteen bytes, as described above, and
correspond one-for-one to each of the defined drives. In the four

drive standard system, for example, the DISKS macro generates a table
of the form:

DPBASE EQU $

DPE®: DW XLTG ,0000H,0000H,0000H,DIRBUF ,DPBO,CSV@ ,ALVD
DPEl: DW XLTQ ,0000H,0000H,0060H ,DIRBUF,DPBO,CSV1,ALV1
DPE2: DW XLT0 ,0000H,0000H,0090H,DIRBUF ,DPB@ ,CSV2,ALV2
DPE3: DW XLTO ,0060H,0000H,0000H ,DIRBUF ,DPBJ,CSV3,ALV3

where the DPH labels are included for reference purposes to show the
beginning table addresses for each drive # through 3. The values
contained within the disk parameter header are described in detail 1in
the previous section. The check and allocation vector addresses are

generated by the ENDEF macro in the ram area following the BIOS code
and tables,

Note that if the “skf" (skew factor) parameter is omitted (or
equal to @), the translation table is omitted, and a 0@@0@OH value is
inserted in the XLT position of the disk parameter header for the
disk, In a subseguent call to perform the logical to physical
translation, SECTRAN receives a translation table address of DE =
@B0PH, and simply returns the original logical sector from BC in the
HL register pair. A translate table is constructed when the skf
parameter 1is present, and the (non-zero) table address is placed into
the corresponding DPH's, The table shown below, for example, is

constructed when the standard skew factor skf = 6 is specified in the
DISKDEF macro call:

XLTd: DB 1,7,13,19,25,5,11,17,23,3,9,15,21
DB 2,8,14,20,26,6,12,18,24,4,10,16,22

Following the ENDEF macro call, a number of wuninitialized data
areas are defined, These data areas need not be a part of the BIOS
which is loaded upon cold start, but must be available between the
BIOS and the end of memory. The size of the uninitialized RAM area is
determined by EQU statements generated by the ENDEF macro. For a
standard four-drive system, the ENDEF macro might produce

(A1l Information Contained Herein is Proprietary to Digital Research.)

32

4C72

BEGDAT EQU $
(data areas)
ENDDAT EQU $
DATSIZ EQU S$S—-BEGDAT

4DBO
913C

which indicates that uninitialized RAM begins at location 4C72H, ends
at 4DB@H-1, and occupies @13CH bytes. You must ensure that these
addresses are free for use after the system is loaded,

After modification, you can use the STAT program to check vyour
drive characteristics, since STAT uses the disk parameter block to
decode the drive information. The STAT command form

STAT d:DSK:

decodes the disk parameter block for drive d (d=A,...,P) and displays
the values shown below:

128 Byte Record Capacity
Kilobyte Drive Capacity
32 Byte Directory Entries
Checked Directory Entries
Records/ Extent

Records/ Block

Sectors/ Track

Reserved Tracks

e 00 6o ee so o0 S0 oo

T TO0OOQQRK

Three examples of DISKDEF macro invocations are shown below with
corresponding STAT parameter values (the 1last produces a full
8-megabyte system).

DISKDEF #6,1,58,,2048,256,128,128,2
r=4096, k=512, d4=128, c=128, e=256, b=16, s=58, t=2

DISKDEF ¥,1,58,,2048,1024,300,0,2
r=16384, k=2048, 4=300, c=0, e=128, b=16, s=58, t=2

DISKDEF 6,1,58,,16384,512,128,128,2
r=65536, k=8192, 4=128, c=128, e=1024, b=128, s=58, t=2

(All Information Contained Herein is Proprietary to Digital Research.)

33

12, SECTOR BLOCKING AND DEBLOCKING.

Upon each call to the BIOS WRITE entry point, the CP/M BDOS
includes information which allows effective sector blocking and
deblocking where the host disk subsystem has a sector size which is a
multiple of the basic 128-byte unit, The purpose here is to present a
general-purpose algorithm which can be included within your BIOS which
uses the BDOS information to perform the operations automatically,

Upon each <call to WRITE, the BDOS provides the following
information in register C:

] = normal sector write
1 = write to directory sector
2 = write to the first sector

of a new data block

Condition @ occurs whenever the next write operation 1is into a
previously written area, such as a random mode record update, when the
write 1is to other than the first sector of an unallocated block, or
when the write is not into the directory area, Condition 1 occurs
when a write into the directory area is performed. Condition 2 occurs
when the first record (only) of a newly allocated data block is
written. 1In most cases, application programs read or write multiple
128 byte sectors in sequence, and thus there is little overhead
involved in either operation when blocking and deblocking records
since pre-read operations can be avoided when writing records.

Appendix G lists the blocking and deblocking algorithms in skeletal
form (this file 1is included on vyour CP/M disk). Generally, the
algorithms map all CP/M sector read operations onto the host disk
through an intermediate buffer which 1is the size of the host disk
sector., Throughout the program, values and variables which relate to
the CP/M sector involved in a seek operation are prefixed by "sek,"
while those related to the host disk system are prefixed by "hst."
The equate statements beginning on line 29 of Appendix G define the
mapping between CP/M and the host system, and must be changed if other
than the sample host system is involved.

The entry points BOOT and WBOOT must contain the initialization
code starting on 1line 57, while the SELDSK entry point must be
augmented by the code starting on line 65, Note that although the
SELDSK entry point computes and returns the Disk Parameter Header
address, it does not physically selected the host disk-at this point
(it is selected 1later at READHST or WRITEHST). Further, SETTRK,
SETTRK, and SETDMA simply store the values, but do not take any other
action at this point, SECTRAN performs a trivial trivial function of
returning the physical sector number,

The principal entry points are READ and WRITE, starting on lines
119 and 125, respectively, These subroutines take the place of vyour
previous READ and WRITE operations,

The actual physical read or write takes place at either WRITEHST
or READHST, where all values have been prepared: hstdsk is the host

(A1l Information Contained Herein is Proprietary to Digital Research.)

34

disk number, hsttrk is the host track number, and hstsec is the host
sector number (which may require translation to a physical sector

number) . You must insert code at this point which performs the full
host sector read or write into, or out of, the buffer at hstbuf of
length hstsiz. All other mapping functions are performed by the
algorithms.

This particular algorithm was tested using an 806 megabyte hard
disk wunit which was originally configured for 128 byte sectors,
producing approximately 35 megabytes of formatted storage. When
configured for 512 byte host sectors, usable storage increased to 57
megabytes, with a corresponding 400% improvement in overall response.
In this situation, there 1is no apparent overhead involved in
deblocking sectors, with the advantage that wuser programs still
maintain the (less memory consuming) 128-byte sectors. This 1is
primarily due, of course, to the information provided by the BDOS
which eliminates the necessity for pre-read operations to take place.

(All Information Contained Herein is Proprietary to Digital Research.,)

35

APPENDIX A: THE MDS COLD START LOADER

MDS-80@8 Cold Start Loader for CP/M 2.0

e “e W

Version 2.8 August, 1979

go09 = false equ]
ffff = true equ not false
0080 = testing equ false
if testing
bias equ ¥34060h
endif
if not testing
000 = bias equ 000dh
endif
060 = cpmb equ bias sbase of dos load
4806 = bdos equ 8@6h+bias sentry to dos for calls
1880 = bdose equ 1880h+bias ;end of dos load
1660 = boot egu 1600h+bias ;cold start entry point
1663 = rboot equ boot+3 swarm start entry point
’
3000 org 30606h ;loaded here by hardware
1880 = bdosl eqgu bdose-cpmb
602 = ntrks equ 2 stracks to read
ge31 = bdoss egu bdosl/128 ;# sectors in bdos
0619 = bdosf egu 25 :# on track 0
ge18 = bdosl egu bdoss-bdos@ :# on track 1
f800 = mon8# equ P£800h ;intel monitor base
ffof = rmon8# equ gffofh ;restart location for mon80
ga78 = base equ @78h ; 'base’ used by controller
go79 = rtype equ base+l ;result type
B@7b = rbyte equ base+3 ;result byte
g7t = reset equ base+7 ;reset controller
8078 = dstat equ base ;disk status port
9879 = ilow equ basetl ;low iopb address
P@d7a = ihigh equ base+2 ;high iopb address
GOff = bsw equ gffh sboot switch
6GO23 = recal equ 3h ;recalibrate selected drive
Vog4 = readf equ 4h ;disk read function
0100 = stack equ 166h ;use end of boot for stack
rstart:
3000 310001 1xi sp,stack;in case of call to mon8#
: clear disk status
3603 db79 in rtype
3005 db7b in rbyte
: check if boot switch is off
coldstart:
3087 dbff in bsw
3862 298350 B BBlasearisvited on?

36

380e

3610
3612

3015
3016
3018
3019
361b

141¢

3622

3024
3026

3828

302b

3824
302e
3631
3032

3034

3037
303a
303b
303c

383fF

a37f

D602
214230

74
d379
¢
d37a
db78

2805

db79

e603
fed2

d20030

db7b

17
dcOfff
1f
eble

c206030

110700
19
235
c21530

c30016

~e wo

H
start:

~e we

waitf:

“e wo

~e

-e

~-e we ~e ~e

~e we wo

-e we

clear the controller

out reset slogic cleared
mvi b,ntrks ;number of tracks to read
1xi h, iopb@

read first/next track into cpmb

mov a,l

out ilow

mov a,h

out ihigh

in dstat

§2* waito

check disk status

in rtype

ani 11b

cpi 2

if testing

cnc rmon88# ;go to monitor if 11 or 10
endif

if not testing

jnc rstart ;retry the load

endif

in rbyte 11/0 complete, check status
if not ready, then go to mon8#

ral

cc rmon8@ ;not ready bit set
rar srestore

ani 11116b ;overrun/addr err/seek/crc
if testing

cnz rmon8# ;go to monitor

endif

if not testing

jnz rstart ;retry the load

endif

1xi d,iopbl ;length of iopb

dad a ;addressing next iopb
dcr b ;count down tracks
jnz start

jmp boot, print message, set-up jmps
jmp boot

parameter blocks

37

3042
3043
3044
3045
3046
3047
6oB7

3049
304a
304b
304c
3044
304e
3059

80
04

0o
g2
wooo

80
g4
18
g1
g1
800c

iopb@:

iopbl
iopbl:

db
db
db
db
db
dw
equ

Géb
ab
db
db
db
dw
end

80h ;iocw, no update
readf sread function
bdos@ ;% sectors to read trk ¢

] strack 9

2 ;start with sector 2, trk @
cpmb ;start at base of bdos
$-iopbd ‘

80h

readf

bdosl ssectors to read on track 1
1 strack 1

1 ;sector 1

cpmb+bdos@*128 ;base of second rd

38

8614

4a00
‘3400
3c6
1600
Bd2c
6002
0004
Bo80
go0da

4200
4a03
4206
4a69
dabc

Wnnownn

c3b34a
c3c34a
c3614b
c3644b
c36a4db

APPENDIX B:

WO Ne Ne Ne we N G e me Ne we we
o
~
n

cpmb
bdos
cpml
nsects
offset
cdisk
buff
retry

WO NG MG WO WO NG NG WS NG MO WO NG WO NG WE NP WO NG WG NG WS N W we W we ™

wboote:

mds-806

THE MDS BASIC I/0 SYSTEM (BIOS)

i/o drivers for cp/m 2.0

(four drive single density version)

version 2,0 august, 1979

equ

20 ;version 2.0

copyright (c) 1979

digital

box 579,

research
pacific grove

california, 93959

org
equ
equ
equ
egu
equ
equ
equ
equ

perform
boot
wboot

4a@@dh ;base of bios in 26k system

3400h ;base of cpm ccp

3c@6h s1base of bdos in 20k system
$-cpmb ;length (in bytes) of cpm system
cpml/128;number of sectors to load

2 ;number of disk tracks used by cp
f@0d4an saddress of last logged disk
d@86h s;default buffer address

19 ;max retries on disk i/o before e

following functions
cold start
warm start (save i/o byte)

(boot and wboot are the same for mds)

const

conin
conout
list
punch
reader
home

console status

reg-a = g0 if no character ready
reg-a = ff if character ready

console character in (result in reg-a)
console character out (char in reg-c)
list out (char in reg-c)

punch out (char in reg-c)

paper tape reader in (result to reg-a)
move to track 00

(the following calls set-up the io parameter bloc
mds, which is used to perform subseguent reads an

seldsk
settrk
setsec
setdma

select disk given by reg-c (6,1,2...)

set track address (0,...76) for sub r/w
set gsector address (1,...,26)

set subsequent dma address (initially 80h

read/write assume previous calls to set i/o parms

read
write

read track/sector to preset dma address
write track/sector from preset dma addres

jump vector for indiviual routines

jmp
jmp
Jmp
jmp
Jjmp

boot
wboot
const
conin
conout

39

4apf c36d4db
4al2 c3724b
4al5 c3754b
4al8 c3784b
4alb c37d4b
4ale c3a74b
4a2l c3acdb
4a24 c3bbdb
4a27 c3cléb
4a2a c3cadb
4a2d c3764b
4a30 c3blédb

4a33+=

4a33+824a60
4a37+000000
4a3b+6e4c73
4a3f+0@d4ddee
4a43+824200
4a47+000000
4adb+6ed4c73
4a4f+3c4dld
4a53+824a00
4a57+0006000
4a5b+6e4c73
4a5f+6bdddc
4a63+824a06
4267+060000
4a6b+6e4c73
4a6f+9a4d7b

4a73+=
4a73+1a0@
4a75+03
4a76+67
4a77+60
4a78+£200
4a7a+3f00
4a7c+cl
4a7d4+09
4a7e+1006
4a80+0200
4a82+=
4a82+01
4a83+47
4a84+6d
4a85+13
4a86+19
4a87+85
4a88+6b
4a89+11
4a8a+17
4a8b+03

~e

dpbase

dpe@:

dpel:

dpe2:

dpe3:

dpbd

x1td

jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
Jjmp
jmp
jmp
Jjmp

maclib
disks
equ
dw
dw
dw
dw
dw
dw
dw
aw
dw
dw
dw
dw
dw
dw
dw
dw
diskdef
equ
dw
db
db
db
dw
dw
db
db
dw
dw
equ
db
db
db
db
db
db
db
db
db
db

list
punch
reader
home
seldsk
settrk
setsec
setdma
read
write
listst ;list
sectran

diskdef ;load
4 : four
$;base
x1td,80006n
0606oh,0000hN
dirbuf, dpb@
csvd,alvd
x1tl,0006h
$0066h,0800806n
dirbuf, dpbl
csvl,alvl
x1t2,00006h
0000h,00800h
dirbuf,dpb2
csv2,alv2
x1t3,0000h
$000h,0000h
dirbuf,dpb3
csv3,alv3

status

the disk definition library
disks
of disk parameter blocks

;translate table
;scratch area

sdir buff,parm block
scheck, alloc vectors
stranslate table
:scratch area

;dir buff,parm block
:check, alloc vectors
;translate table
;scratch area

:sdir buff,parm block
scheck, alloc vectors
;translate table
:scratch area

:dir buff,parm block
;check, alloc vectors

9,1,26,6,1024,243,64,64,0ffset

;disk parm block
;sec per track
;block shift
:block mask
sextnt mask
;disk size-1
;directory max
;allocd

sallocl

;check size
;offset
;translate table

4a8c+09
4a8d+0f
4a8e+l5
4a8f+@2
4a90+08
4a9l+0e
4a92+14
4a93+1a
4a94+06
4a95+0c
4396+12
4a97+18
4a98+04
4a99+0a
4a9a+l0
4a9b+16

4a73+=
BOlE+=
PB1O+=
4a82+=

4a73+=
0B1f+=
0616G+=
4a82+=

4a73+=
PB1f+=
B0d10+=
4a82+=

gofd
80fc
0B£3
g07e

wowon

£f8060
ffof
£863
f806
£869
f88@c
£86f
f812

W wn nonown

dpbl
alsl
cssl
x1ltl

dpb2
als?2
css2
x1lt2

dpb3
als3
css3
x1t3

WO WO NP N N WE N N N wo

revrt
intc
icon
inte

’

’
mon849
rmon80
ci
ri
co
po
lo
csts

db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
diskdetf
equ
egu
equ
equ
diskdef
egu
equ
equ
eqgu
diskdetf
egu
equ
equ
equ

endef occurs at

end of controller - independent code,

9

15
21

2

8

14
20
26

6

12
18
24

4

10
16
22
1,0
dpb@
als@
cssf
x1to
2,9
dpb#
als@
cssi
x1t9
3,0
dpb#
alsg
cssi
x1t@

;equivalent parameters

;same allocation vector size
;same checksum vector size
:same translate table

;eqguivalent parameters

;same allocation vector size
s same checksum vector size
:same translate table

;equivalent parameters

;same allocation vector size
;same checksum vector size
;jsame translate table

end of assembly

the remaini

are tailored to the particular operating environm
be altered for any system which differs from the

the following code assumes the mds monitor exists
and uses the i/o subroutines within the monitor

we also assume the mds system has four disk drive

equ
equ
equ
equ

gféh
dfch
df3h

;interrupt revert port
;interrupt mask port
sinterrupt control port

$111$1110b;enable rst @ (warm boot) ,rst 7

mds monitor equates

equ
equ
equ
equ
equ
equ
equ
equ

PE£800h
PEfOfh
0£883h
pf£806h
p£809h
Pf8dch
P£8Bfh
p£812h

41

:mds monitor

;restart mon80 (boot error)
;console character to reg-a
sreader in to reg-a

sconsole char from ¢ to console o
;punch char from ¢ to punch devic
:1list from ¢ to list device
;console status 00/ff to register

0078
20678
0079
607b

6879
go7a

0004
0606
60063
bo04
oGod
060a

4a9c
4a9f
4aal
4aad
4abl

4ab3
4ab6
4ab9
4abc
4abd
4dac@

4ac3

4aco
4ac8

4acH9
4acc
4act
4adl
4ad4
4ad6
4ad9
4adb

4ade
4adf

6dbada
3230
6b2043f
322e36
0dgabdo

3100061
219c4da
cdd34b
af '
320400
c30£f4b

318000

delda
c5

010634
cdbb4b
feldod
cd7d4b
beld
cda74b
fed?2
cdacdb

cl
#62c

¢ we

base

dstat
rtype
rbyte

’

ilow
ihigh
readf
writf -
recal
iordy
cr

1f

.
7 .

signon:

~e

boot:

RO R JE TR T
o
(o]
o}
r?
.
~e

-e

wboot@:

~e wo

disk ports and commands

equ 78h ;base of disk command io ports
equ base ;disk status (input)

-equ base+l ;result type (input)

equ .- base+3 ;result byte (input)

eqgu base+l ;iopb low address (output)
equ base+2 ;iopb high address (output)
eqgu 4h ;read function

eqgu 6h ;write function

equ 3h ;recalibrate drive

equ 4h +i/0 finished mask

equ . @dh ;carriage return

equ Bah ;line feed

;signon message: xxk cp/m vers y.y

-db cr,lf,1f

db 1209° ;sample memory size

db- 'k cp/m vers '

db vers/10+'6"','."',vers mod 16+'9"
db cr,1f,0

;print signon message and go to ccp
(note: mds boot initialized iobyte at 606G3h)
1xi sp,buff+86h

1xi ~ h,signon

call prmsg ;print message

Xra a :clear accumulator

sta cdisk sset initially to disk a
jmp gocpm - ;go to cp/m

loader on track @, sector 1, which will be skippe
read cp/m from disk - assuming there is a 128 byt
start,

1xi sp,buff ;using dma - thus 86 thru ff ok £
mvi c,retry ;max retries

push b '

;enter here on error retries

1xi b,cpmb ;set dma address to start of disk
call setdma :

mvi c,d - :sboot from drive 8

call seldsk

mvi c,d

call settrk ;start with track @

mvi c,2 sstart reading sector 2

call setsec -

read sectors, count nsects to zero
pop b :10-error count
mvi b,nsects

42

4dael
4ae2
4daeb
43e8
4aeb
daee
4daef
4af@d
4afl
4afd
4af’
4afo

4afc
4daff
4bG o
4b@1
4b04
4bB5
4bB6
4b07
4bda
4bdb
4bfc

4b0f
4bl9
4bl2
4bl4
4bl5
4b17
4b19
4blb
4blc

4ble
4b21

4b24
4b26
4b29
4b2c
4b2f
4b32
4b35
4b38
4b3b
4b3e

c5
cdcléb
c2494b
2ab6cdc
118606
19

44

44
cdbb4db
3abb4dc
fela
dag54b

3abadc
3c
4f
cda74b
af
3c
4f
cdacdb
cl
g5
c2elda

£3
3el2
d3fd
af
d3fc
3eTe
d3fc
af
d3f3

018000
cdbbdb

3ec3

320000
21634a
2201060
320560
21863c
220600
323800
2100f8
223900

rdsec:

~e

rdl:

~o (Q ~eo ~o
O
g
3

e o

- weo

-.

sread next sector

push
call
jnz
lhld
1xi
dad
mov
mov
call
lda
cpi
jc
must be
lda
inr
mov
call
Xra
inr
mov
call
pop
dcr
inz

b
read

;s save sector count

booterr ;retry if errors occur

iod
d,128
d

b,h
c,1
setdma
ios

26

rdl
sector
iot

a

c,a
settrk
a

a

c,a
setsec
b

b
rdsec

sincrement dma address
;sector size
sincremented dma address in hl

;ready for call to set dma

;sector number just read
;read last sector?

26, zero and go to next track
;get track to register a

sready for call
:Clear sector number
;to next sector
sready for call

:recall sector count
;done?

done with the load, reset default buffer address
;: (enter here from cold start boot)
enable rstf# and rst7

di

mvi
out
Xra
out
mvi
out
Xra
out

a,lzh
revrt
a

intc
a,inte
intc

a

icon

sinitialize command

:Cleared
;rst@ and rst7 bits on

;interrupt control

set default buffer address to 860h

1xi
call

b,buff
setdma

reset monitor entry points

mvi
sta
1xi
shld
sta
1xi
shld
sta
1xi
shld

a,jmp
g

h,wboote

1

5
h,bdos
6

7*8

h,mon8@

7*8+1

;jmp wboot at location 00

;jmp bdos at location 5
;Jmp to mon8@ (may have been chan

leave iobyte set

43

4b41
4b44
4b45
4b46

4b49
4b4a
4b4b

4bde
4b4f

4b52
4b55
4b58

4b5b

4b61

4b64

4b67

4b69

4bo6a

4b6d

4b70
4b71

4b72

4b75

3a0400
4f
fb
c30034

cl
2d
ca524b

c5
c3c94a

215b4b
cdd34b
c30fff

3f6261f4

c312f£8

cdg3£fs

e67f

c9

c309£8

c30££8

af
c9

c30cft8

c306f£8

-e

O e ~e

ooterr:

~e

.
’

booterf:

.
14

bootmsg:

onst:

Q) ~eo So

~e

conin:

’

conout:

1

ist:

jt ~o

istst:

punch:

r
reader:

H
home:

previously selected disk was b, send pvarameter to

lda cdisk ;last logged disk number
mov c,a :send to ccp to log it in
ei

jmp cpmb

error condition occurred, print message and retry
pop b ;recall counts

dcr c

jz booterd

try again

push b

jmp wboot@

otherwise too many retries

1xi h,bootmsg

call prmsg

jmp rmon8@ ;mds hardware monitor
db '?boot’,d

;console status to reg-a
(exactly the same as mds call)

jmp csts

;console character to reg-a

call ci

ani 7fh ;remove parity bit
ret

;console character from ¢ to console out
jmp co

;list device out
(exactly the same as mds call)
jmp lo

;return list status
Xra a
ret salways not ready
;punch device out

(exactly the same as mds call)
Jjmp po

;reader character in to reg-a
(exactly the same as mds call)
jmp ri

;move to home position

44

4b78
4b7a

4b74
4b80
4b81
4b83

4b84
4b86
4b89
4b8a
4b8c
4b8d
4b99

4b92
4b93
4b96
4b97
4b99
4bY%a

B3k
4b9%e
4b9f
4ba@
4bal
4ba2
4bas
4ba6

4ba’7
4baa
4bab

4bac
4baft
4bbf

4bbl
4bb3
4bb4
4bb5
4bbb6

1BB3

fed0
c3a74b

210000
79
fel 4
ag

e602
32664c
79
e601
b7
ca924b
3e30

47
21684c
Te
e6ct
bd

77
8200
29

29

29

29
11334a

19
c9

216a4dc
71
c9

216bdc
71
c9

0600
eb

a9

Te
326b4c

6
c

e

mvi
jmp

’

seldsk:
1xi
mov
cpi
rnc

-.

ani
sta
mov
ani
ora
jz

mvi

setdrive:

mov
1xi
mov
ani
ora
mov

moy
mvi

dad
dad
dad
dad
1xi
dad
ret

.
[

treat as track 60 seek

c,d
settrk

;select disk given by register c

h,6086h ;return 00080 if error
a,c
ndisks ;too large?
1leave hl = 0000
16b :00 00 for drive 4,1 and 18 10 fo
dbank :to select drive bank
a,c 00, 61, 10, 11
1b ;mds has 6,1 at 78, 2,3 at 88
a sresult 6072
setdrive
a,001166008b 1selects drive 1 in bank
b,a :save the function
h,iof ;10 function
a,m
11661111b ;mask out disk number
b smask in new disk number
m,a :;save it in iopb
%:ﬁ shl=disk number
h %2
h 1 %4
h ;%8
h ;%16
d,dpbase
a :hl=disk header table address

settrk: ;set track address given by c

1xi
mov
ret
7
setsec:
1xi
mov
ret
sectran:

mvi

xchg

dad
mov
sta
mo
re

h,iot
m,cC

;Set sector number given by c

h,ios
m,c

;translate sector bc using table at de

b,@ ;double precision sector number i
;translate table address to hl

b stranslate(sector) address

a,m stranslated sector number to a
ios
l,a jreturn sector number in 1

14
setdma: ;set dma address given by regs b,c

45

“4bbb
4bbc
- 4bbd
4bc@

4bcl
4bc3
4bco
4bc9

4bca
4bcc
4bcf
4bd2

4bd3
4bdd
4bd5

4bdé6
4bd7
4bds
4bdb
4bdc
4bdd

4bed
4be3
4bed
4beb
4be7

4be8
4bea
4bed
4bee
4bef

4bfo
4bf2

4bf5

4bf8

69
60
226c¢c4c

c9

fedd
cdelidb
cdf@d4b
c9

Bed6
cdef4b
cdf@4b
c9

Te
b7
c8

e5
4f
cd6eadb
el
23
c3d34b

21684c
Te
e6f8
bl

77

e620
216b4c
b6

77

c9

Pelba
cd3fdc

cddcdc

3a664c

I
read:

~e we

write:

mov 1l,c
mov h,b
shld iod
ret

;réad next disk record (assuming disk/trk/sec/dma

mvi c,readf ;set to read function

call setfunc

call waitio ;perform read function

ret ;may have error set in reg-a

:disk write function

mvi c,writf

‘call setfunc ;set to write function
call waitio

ret :may have error set

T ~e we ~e

rmsg:

~e

I
setfunc:

.
14

utility subroutines
;print message at h,1 to @

mov a,m

ora a ;Zero?

rz

more to print

push h

mov c,a

-call conout

pop h

inx h

jmp prmsg

set function for next i/o (command in reg-c)

1xi h,iof :io function address

mov a,m ;get it to accumulator for maskin
ani 11111060b ;remove previous command
ora c ;set to new command

mov m,a ;replaced in iopb

~s we

’

waitio:

the mds-880 controller req's disk bank bit in sec
mask the bit from the current i/o function

ani 00l60060b ;:mask the disk select bit
1xi h,ios ;address the sector selec
ora m :select proper disk bank
mov m,a ;set disk select bit on/o
ret

mvi c,retry ;max retries before perm error

rewait:

’

~e

start the i/o function and wait for completion

call intype ;in rtype
call inbyte ;clears the controller
lda dbank ;set bank flags

46

4bfb
4bfc
4pfe
4cid
4c03
4cB5
4cl6
4c08

4c@b
4c@d
4cle

4clp
4cl3
4cl>5

4cl8

4clb
4cld

4c20
4c21

4c24
4c27
4c28
4c2b
4c2c
4dcle

4c31

4c32
4c35

b7
3e67
g64dc
c2@bdc
d379
78
d37a
c31l04c

4389
78
d38a

cd594c
e604
calddc

cd3fdc

fed?2
ca324c

b7
c2384c

cd4cdc
17
da324c
1f
e6fe
c2384c

c9

cddcéc
c3384c

- weo e weo

~o ~e

~e wo

—e we

wready:

error:

N6 Ne Ne Ne Ne Ne Ne we we Ne F) e

ora a :2zero if drive 6,1 and nz

mvi a,iopb and @ffh ;low address for iopb
mvi b,iopb shr 8 shigh address for iopb
jnz iodrl ;drive bank 1? :
out ilow ;low address to controlle
mov a,b

out ihigh shigh address

jmp waith ;to wait for complete
;drive bank 1

out ilow+16h :88 for drive bank 14
mov a,b

out ihigh+16h

call instat ;wait for completion
ani iordy ;ready?

jz waitd

check io completion ok

call intype ;must be io complete (00)
@0 unlinked i/o complete, ‘#1 linked i/o comple
19 disk status changed 11 (not used)

cpi 10b ;ready status change?

jz wready

must be 86 in the accumulator
ora a
jnz werror ;some other condition, re

check i/o error bits
call inbyte

ral

jc wready ;unit not ready
rar : ~

ani 11111116b ;any other errors?
jnz werror

read or write is ok, accumulator contains zero
ret

;not ready, treat as error for now
call inbyte ;clear result byte
jmp trycount

sreturn hardware malfunction (crc, track, seek, e
the mds controller has returned a bit in each pos
of the accumulator, corresponding to the conditio
- deleted data (accepted as ok above)

" = Crc error

- seek error

- address error (hardware malfunction)
data over/under flow (hardware malfunct
- write protect (treated as not ready)

- write error (hardware malfunction)

- not ready

SO WS
I

47

4c38
4c39

4c3c
4c3e

4c3f
4c42
4c43
4c46
4c48
4c49
4cdb

4c4c
qc4f
4c590
4c53
4c55
4c56
4c58

4c59
4c5c
4c5d
4c60
4c62
4c63
4c65

4c66

4c67
4c68
4c69
4cba
4c6b
4cobe

ga
c2f24b

3e01l
c9

3a664c
b7
c2494c
db79
c9
db89
c9

3a664c
b7
c2564c
db7b
c9
db8b
c9

3a664c
b7
c2634c
db78
c9
db88
co

po

80
04
g1
g2
01
8000

o (F Ne we N0 we N~

~e we

intype:

intypl:

inbyte:

inbytl:

7
instat:
instal:

.
’
*
’
.
[
.
’

d

bank:
iopb:

iof:
ion:
iot:
ios:
iod:

—e weo wo

(accumulator bits are numbered 7 6 5 4 3 2 1 0)

it may be useful to filter out the various condit
but we will get a permanent error message if it i
recoverable, in any case, the not ready conditio
treated as a separate condition for later improve

rycount:

register ¢ contains retry count, decrement 'til z
dcr c

jnz rewait j;for another try
cannot recover from error

mvi a,l serror code

ret /

7/

intype, inbyte, instat read drive bank 06 or 10

lda dbank

ora a :
jnz intypl ;skip to bank 10
in rtype

ret

in rtype+lgh ;78 for 8,1 88 for 2,3
ret

lda dbank

ora a

jnz inbytl

in rbyte

ret

in rbyte+l0h

ret

lda dbank

ora a

jnz instal

in dstat

ret

in dstat+16h

ret

data areas (must be in ram)

db [} ;disk bank 00 if drive 6,1
: 160 if drive 2,3

;io parameter block

db 86h ;normal i/o operation

db readf :io0 function, initial read

db 1 ;humber of sectors to read

~db offset ;track number

db 1 ;sector number

dw buff ;10 address

define ram areas for bdos operation

48

4cbe+=
4cbe+
4icee+t+
4404+
4dlda+
4d3c+
4d4c+
4d6b+
4d7b+
4d9%a+
4daa+=
#13c+=
4daa

begdat

dirbuf:

alvg:
csvl:
alvl:
csvl:
alv2:
csv2:
alv3:
csv3:
enddat
datsiz

endef
equ
ds
ds -
ds

ds

.ds

ds
ds
ds
ds
equ
equ
end

$
128
31
16
31
16
31
16
31
16
$

$-begdat

49

;directory access buffer

APPENDIX C: A SKELETAL CBIOS

skeletal cbios for first level of cp/m 2.6 altera

14

06014 = msize equ 20 ;cp/m version memory size in kilo
; "bias" is address offset from 3460h for memory sy
; than 16k (referred to as "“b" throughout the text)
r

0000 = bias equ (msize-20)*1024

3400 = - ccp eqgu 34@¢Bh+bias ;base of ccp

3c06 = bdos egu ccp+806h ;base of bdos

4a00 = bios equ ccp+l680h :base of bios

0004 = cdisk equ 3@04h scurrent disk number 6=a,...,15=p

P003 = iobyte equ P@@3h ;intel i/o byte

4a00 org bios ;origin of this program

g@2c = nsects equ ($-ccp) /128 ;warm start sector count
H jump vector for individual subroutines

4afB c39c4a jmp boot ;cold start

4a@3 c3a64a wboote: jmp wboot ;warm start

4ap6 c3114b jmp const ;console status

4a09 c3244b jmp conin ;console character in

4adc ¢c3374b jmp conout ;console character out

4apf c3494b jmp list ;list character out

4al2 c34d4b jmp punch ;punch character out

4al5 c34f4b jmp reader ;reader character out

4al8 c3544b jmp home ;move head to home positi

4alb c35a4b jmp seldsk ;select disk

4ale c37d4b - jmp settrk ;set track number

4a2l c3924b jmp setsec ;set sector number

4a24 c3addb jmp setdma ;set dma address

4a27 c3c34b jmp read ;read disk

4a2a c3d64db jmp write swrite disk

4a2d c34b4b jmp listst ;return list status

4a36 c3a74b jmp sectran ;sector translate

fixed data tables for four-drive standard
ibm-compatible 8" disks
disk parameter header for disk 00

[oT TR T TR 1Y

4a33 734a00 dpbase: dw trans, 80006h
4a37 000000 : dw 0000h,0000n
4a3b f@4c8d - - dw dirbf,dpblk
4a3f ecd4d7d dw chk@@,allon
: disk parameter header for disk 01
4a43 734a00 - dw trans, 2000h
4a47 000000 dw 3000h,8000h
4a4b f04c8d dw dirbf,dpblk
4a4f fcddsf dw chk@l,alldl
; disk parameter header for disk 02
4a53 734a08 dw trans, 9006h
4a57 000000 dw g0006h,0000n
4a5b f@4c8da- , dw dirbf,dpblk
4a5f Bcdeae dw chk@2,allo2

50

4a63
4a67
4dabb
4da6f

1373
4a7b
4a7f
4a83
4a87
4a8b

4a8d
4a8f
4299
4a91
4a92
4a94
4a96
4a97
4298
4a9%a

4a9c
4a9d
4aaf
4aa3

4aab
4aad
4daab
daae

4abl
4ab3
4ab5s

4dab?

4aba
4abb
4abc
4abd
4abe
4acl

734a060
00000
f@4c8d
lcdecd

[/
150268
170309
1502068
141a06
121804
1016

lag@
03
@7
3]
£200
3f00
c@
Y]
1000
0200

af

320300
320400
c3efda

318000
0eldd

cdb5adb
cd544b

g62cC
fedd
l662

210034

c5
as
e5
4a
cd924b
cl

.
’

~e wo

trans:

U‘\a ~e weo we

’
wboot:

-

~e we

loadl:

disk parameter header for disk 03

dw trans,0060h
dw 00006h,0060h
dw dirbf,dpblk
dw chk03,all@3

sector translate vector

g8 bs76131195 i 88SEQLE 1:8:34

db 23,3,9,15 :sectors 9,16,11,12
dab 21,2,8,14 ;sectors 13,14,15,16
db 20,26,6,12 ;sectors 17,18,19,240
db 18,24,4,10 ;s sectors 21,22,23,24
db 16,22 ;sectors 25,26

;disk parameter block, common to all disks
dw 26 ;1sectors per track
db 3 sblock shift factor
db 7 :block mask

db a :null mask

dw 242 :disk size-1

dw 63 ;directory max

db 192 ;alloc @

db] ;alloc 1

dw 16 ;check size

aw 2 strack offset

end of fixed tables

individual subroutines to perform each function
;simplest case is to just perform parameter initi

Xra a szero in the accum

sta iobyte ;clear the iobyte

sta cdisk sselect disk zero

jmp gocpm ;initialize and go to cp/
;simplest case is to read the disk until all sect
1xi sp,.80h ;use space below buffer £
mvi c,? , :select disk @

call seldsk

call home 1go to track 90

mvi b,nsects 1b counts # of sectors to
mvi c,@d ;:c has the current track
mvi d,2 :d has the next sector to

note that we begin by reading track @, sector 2 s
contains the cold start loader, which is skipped

1xi h,ccp ;base of cp/m (initial lo
;load one more sector

push b ;save sector count, current track
push d ;jsave next sector to read

push h ;save dma address

mov c,d ;get sector address to register c
call setsec ;set sector address from register

pop b ;recall dma address to b,c

51

4ac2
4ac3

4acé
4acH9
4acb

4ace
4act
4ad2
4ad3
4dad4
4ads
4adé6

4ad9
4ada
4adb
4add

4aed
4ae2

4ae3
daed
4aeb
4aeb
4ae9
4aea
4aeb
4aec

4aef
4afl
4af4
4af?

4afa
4afd
4b6 0

4b@3
4b06

4b09
4bda
4bgd
4ble

c5
cdad4b

cdc34b
fedd
c2a64a

el
118000
19
dl
cl
25
caefda

14

7a
felb
dabada

1641
gc

c5
das
e5
cd7d4b
el
dl
cl
c3bada

3ec3

32060600
210834a
220100

320500
21863c
220600

018000
cdad4b

£b
3a0400
4f

c30034

~e

“e w9

~e we

“-e we

~e we

L e ~e

ocpm:

~e

e

~e

push b ;replace on stack for later recal
call setdma ;set dma address from b,c

drive set to @, track set, sector set, dma addres
call read

cpi @8h ;any errors?

jnz wboot ;retry the entire boot if an erro

no error, move to next sector

pop h ;recall dma address

1xi d,128 ;dma=dma+128

dad d ;hew dma address is in h,l

pop d srecall sector address

pop b srecall number of sectors remaini
dcr b ;sectors=sectors-1

jz gocpm ;transfer to cp/m if all have bee

more sectors remain to load, check for track chan
inr d

mov a,d ;sector=27?, if so, change tracks
cpi 27

jc loadl ;carry generated if sector<27

end of current track, go to next track

mvi d,1 :begin with first sector of next
inr c strack=track+l

save register state, and change tracks
push b

push d

push h

call settrk ;track address set from register
pop h :

pop d

pop b

jmp loadl ; for another sector

end of load operation, set parameters and go to ¢

mvi a,fc3h ;c3 is a jmp instruction

sta)] ;for jmp to wboot

1xi h,wboote swboot entry point

shld 1 ;set address field for jmp at @
sta 5 ;for jmp to bdos

1xi h,bdos ;bdos entry point

shld 6 ;address field of jump at 5 to bd
1xi b, 86h ;default dma address is 86h

call setdma

ei ;enable the interrupt system

1da cdisk sget current disk number

mov c,a ;send to the ccp

jmp ccp ;190 to cp/m for further processin

52

4bll
4b21
4b23

4b24
4b34
4b36

4b37
4b38
4b48

4b49
4b4a

4bdb
4bdc

4bdd
4bde

4b4af
4b51
4b53

4b54
4b56
4b59

4b5a
4b5d
4b5e
4b61

3e00
c9

e67f
c9

79
c9

79
c9

af
c9

79
c9

3ela
e67f
c9

fedd
cd7d4b
c9

210060
79
32efdc
febhd

() ~¢ ~e we wo wo e

onst:

conout:

[SS R Y
-
0]
o+
.

=~

istst:

punch:

~e weo

reader:

~e T3 we we we wo we N

seldsk:

simple i/o handlers (must be filled in by user)
in each case, the entry point is provided, with s
to insert your own code '

;console status, return #ffh if character ready,

ds 16h ;space for status subroutine
mvi a,80h
ret

sconsole character into register a

ds 10h ;space for input routine
ani 7fh ;strip parity bit
ret

;console character output from register c

mov a,c ;get to accumulator
ds 10h ;space for output routine
ret

:list character from register c¢
mov a,c ;character to register a
ret :null subroutine

;return list status (@ if not ready, 1 if ready)
Xra a :0 is always ok to return
ret

;punch character from register ¢

mov a,c ;character to register a
ret :null subroutine

;read character into register a from reader devic

mvi a,lah ;enter end of file for now (repla
ani 7fh ;remember to strip parity bit
ret

i/o drivers for the disk follow
for now, we will simply store the parameters away
in the read and write subroutines

;move to the track @@ position of current drive

translate this call into a settrk call with param

mvi c,? :select track 0
call settrk
ret ;we will move to 00 on first read

;select disk given by register c

1xi h,6060h ;error return code

mov a,c

sta diskno

cpi 4 ;must be between @ and 3

53

4b63
4b64
4bbe

- 4b71

4b72
4b74
4b75
4b76
4b77
4b78
4b7b
4b7c

4b7d
db7e
4b81
4b91

4b92
4b93
4b96
4bab

4ba’?
4ba8
4ba9
4baa
4bac

4bad
4bae
4baf
4bb?2
4bc2

4bc3
4bd3

4bdé

ag

3aef4c
6f
2600
29

29

29

29

11334a

19
c9

79
32e94c

c9

79
32eb4c

c9

eb
g9
6e
2600
c9

69
60
22ed4c

c9

c3e64b

rnc sno carry if 4,5,...
: disk number is in the proper range
ds 19 ;space for disk select
: compute proper disk parameter header address
lda 2 diskno
mov l,a ;s 1=disk number 6,1,2,3
mvi h,d .. +high order zero
dad _h ;%2 ’
dad h s %4
dad h 1%8 ;
dad h , :1*16 (size of each header)
1xi = d,dpbase 4
. dad - d ;hl=,dpbase(diskno*16)
ret

settrk: ;set track given by register c

mov a,c
sta track

~ds 16h ;space for track select
ret :

H
setsec: ;set sector given by register c

mov a,c

sta sector .

ds 16h ;space for sector select
ret .

sectrah: ; ' ,
;translate the sector given by bc using the
;translate table given by de

xchg. shl=_trans

dad b ;hl=_,trans(sector)
mov 1,m :11 = trans(sector)
mvi h,o :hl= trans(sector)
ret swith value in hl

setdma: ;set dma address given by registers b and c

mov l,c ;low order address

mov h,b ;high order address

shld dmaad ;save the address

ds 10h ;space for setting the dma addres

ret ' .
’
read: ;perform read operation (usually this is similar
; so we will allow space to set up read command, th
; common code in write)

ds 16h ;set up read command

jmp waitio ;to perform the actual i/o

write: ;perform a write operation
ds 16h ;set up write commanu

waitio: jenter here from read and write to perform the ac

: operation, return a 00h in register a if the ope
H properly, and @1h if an error occurs during the r

54

4beb
4ceb
4ce8

4ce9
4ceb
4ced
4cef

4cfo
4cfi
4479
448f
4dae
4dcd
4dec
4dfc
4efic
4elc

4elc
813c
4e2c

3edl
c9

e we we wo “e

9 we we W we we

14

track:
sector
dmaad:
diskno

.
’

begdat
dirbf:
allgg:
all@l:
allg2:
all@3:
chk@d:
chk@1l:
chk@2:
chk@d3:

enddat
datsiz

(1)

in this case, we have saved the disk number in °'d
~ ST the track number in 'track' (0-76
‘the sector number in ‘sector' (1l-

~ the dma address in ‘'dmaad’® (@-655
ds 256 ;space reserved for i/o drivers

mvi “a,l serror condition
ret ;replaced when filled-in

the remainder of the cbios is reserved uninitiali
data area, and does not need to be a part of the
system memory image (the space must be available,
however, between "begdat® and "enddat").

ds 2 ;two bytes for expansion
ds 2 s1two bytes for expansion
ds 2 ;direct memory address
ds 1 sdisk number ©0-15
scratch ram area for bdos use

egu $;beginning of data area
ds 128 - j;scratch directory area
ds 31 : ;allocation vector @

ds 31 - j;allocation vector 1

ds 31 ;allocation vector 2

ds 31 ;allocation vector 3

ds 16 ;check vector 0

ds 16 :check vector 1

ds - 16 scheck vector 2

ds 16 ;check vector 3

equ $;end of data area

eau $~-begdat;size of data area

end

55

0100
P14

0000
3400
3cod
4abp0

0160
0103
p106

P168

fl0a
gled
0110
0111
p112
6113
0115

9118
2119
glla
gllc

011f
0120

APPENDIX D: A SKELETAL GETSYS/PUTSYS PROGRAM

318033
218033
0600
fedl

cdoen3

e e -

msize

: “bias"
H

bias
cecp
bdos

~ bios

we wO

Ne %o W W We we. wo

gstart:

rdstrk:

rds$sec:

118000

dadadl

a4
78
fe2

combined getsys and putsys programs from Sec 4.
Start the programs at the base of the TPA

org 8100h

equ 20 - ; size of cp/m in Kbytes
is the amount to add to addresses for > 20k
(referred to as "b" throughout the text)

equ (msize-20) *1024

equ 3400h+bias

equ ccp+0800h

equ ccp+1600h

getsys programs tracks # and 1 to memory at

3886h + bias

register - usage

~ (scratch register)
‘track count (#...76)
sector count (1l...26)
(scratch register pair)

no-oQow

,e

1 . load address

P set to stack address
~ ; start of getsys
1xi sp,ccp-00806h ; convenient plac
1xi h,ccp-0080h : set initial loa
mvi b,0 ; start with trac

: read next track

mvi - c,l ; each track star
call = readS$sec ; get the next se
1xi d,128 ; offset by one s
dad d : (hl=h1+128)
inr c ; next sector
mov a,c ;s fetch sector nu
cpi 27 : and see if la
jc rdsec ; <, do one more

; arrive here at end of track, move to next track

dap8ol

fb
76

-

inr b : track = track+l
mov a,b s check for last
cpi 2 ; track = 2 ?

jc rdstrk ; <, do another

arrive here at end of load, halt for lack of anything b

ei
hlt

56

0200

0200
0203
2206

0208

@ 20a
920d
0210
9211
2212
2213
3215

3218
8219
g21la
B2lc

021f
0220

0300

0300
0301
0302

0342
6343

318633
218033
0600

Pedl

cdogs4
118000
19

dc

79
felb
dafaB2

g4

78
fed2
daf802

fb
76

c5

el
cl

“e we “o

org
put$sys:
1xi sp,ccp-06080h
1xi h,ccp-00680h
mvi b,d
weStrk:
mvi c,l
wrSsec:
call writeSsec
1xi 4,128
dad d
inr c
mov a,c
cpi 27
jc wr$sec

-e

arrive here at end of track, move to

inr b

mov a,b
cpi 2

jc wrStrk

-e

ei
hl

done with putsys, halt for 1&ck

t

($+0106h) and Of£f00h

- we we

-e

°
[
.
’
.
’
.
r
.
14
.
’
.
[

putsys program, places memory image starting at
388dh + bias back to tracks # and 1
start this program at the next page boundary

convenient plac
start of dQump
start with trac

start with sect

write one secto
length of each
<hl>=<hl> + 128
<e> = <> + 1
see if

past end of t
no, do another

next track

.o we we we

track = track+l
see if

last track
no, do another

of anything bette

; user supplied subroutines for sector read and write

.o

or

read$sec

e N0 N “we e

move to next page boundary

g ($+0100h) and 0f£fP0h

read the next sector

track in ,
sector in <c>
dmaaddr in <hl>

push b
push h
; user defined read operation goes here
‘ ds 64
pop h

pop b

57

p344
0400

0400

0401

pag2
0442

0443
0444

8445

c9

c5
e5

el

cl
c9

ret

org ($+01008h) and BffO0h

‘write$sec:

; same parameters as read$sec

push b

push h.
; user defined write operation goes here
' ds 64

pop h

pop b

ret

; end of getsys/putsys program

end

58

.
4

another page bo

0000

0014 =

2000
3400
4a00
0300
4a00
1900
0@32

0000
0003
0065

010200
1632
210634

WO MO MO NE NG NP NS NG NI NG WG WE WE NG "G We WS N

APPENDIX E: A SKELETAL COLD START LOADER

this is a sample cold start loader which, when modified
resides on track 06, sector 81 (the first sector on the
diskette)., we assume that the controller has loaded
this sector into memory upon system start—-up (this pro-
gram can be keyed-in, or can exist in read/only memory
beyond the address space of the cp/m version you are
running) . the cold start loader brings the cp/m system
into memory at "loadp" (34606h + "bias")., in a 20k
memory system, the value of “bias" is 0006h, with large
values for increased memory sizes (see section 2),., afte
loading the cp/m system, the clod start loader branches
to the "boot" entry point of the bios, which begins at
"bios" + "bias." the cold start loader is not used un-
til the system is powered up again, as long as the bios
is not overwritten, the origin is assumed at 00606h, an
must be changed if the controller brings the cold start
loader into another area, or if a read/only memory area
is used.

org] ; base of ram in cp/m
msize equ 20 ; min mem size in kbytes
bias egu (msize-20)*1024 ; offset from 20k system
ccp equ 34@0h+bias ; base of the ccp
bios equ ccp+l6d0h ; base of the bios
biosl equ P300h : length of the bios
boot equ bios
size egu bios+biosl-ccp ; size of cp/m system
sects equ size/128 : # of sectors to load

~e

begin the load operation

cold:
1xi b,2 : b=0, c=sector 2
mvi d,sects ; d=# sectors to load
1xi h,ccp ; base transfer address

lsect: ; load the next sector

.
14
.
’
.
’
3
I
.
1
.
14
.
14

insert inline code at this point to
read one 128 byte sector from the
track given in register b, sector
given in register c,

into the address given by <hl>

branch to location "cold" if a read error occurs

59

0o08
0B08b

0d6b
Bo6cC

PO6f
0072

0673
0874
PB75
wB77

@#87a
607c
Bd@7d
6080

c36b00

15
cabP4a

318000
39

dc

79
felb
dad 806

gedl
g4
c30800

N WO we we we

hkkhkkhkkkhhkkkkhkkkkkhhkhkhkhkkhkkhhkhkkhkhkhkkkhkkhkhkkhkkkkhkk

*
*
*

khkkkhkhkkhhkhhhkhhhhkhhhhhkhhhhhhkhkhkkkkhkkhhkhkkkhkkhkhkhkkkkk

user supplied read operation goes here,.,

jmp past$patch ; remove this when patche
ds 60h
past$patch:
; go to next sector if load is incomplete
dcr d : sects=sects-1
jz boot : head for the bios
: more sectors to load
; we aren't using a stack, so use <sp> as scratch registe
: to hold the load address increment
1xi sp,128 ; 128 bytes per sector
dad sp s+ <hl> = <hl> + 128
inr c : sector = sector + 1
mov a,c
cpi .27 ; last sector of track?
jc lsect ; no, go read another

; end of track, increment to next track

mvi c,l ; sector =1

inr b ; track = track + 1
jmp 1sect ; for another group
end ; of boot loader

60

HFS VO UT A WD
40 o0 o9 60 00 es e¢ e0 se Se oo

e e
Coe~J0 Ut W I
es se oo oo o .

o
=
. oo

e

NN NN
& W N -
e

NN
>0 oy U
.o e e 80 oo

w N
S\
.

WO WO WO MO NG NE WO e WO WO WO MO WMe WO VO WO N NG We NG NS NG Ne NS NG WO NP WO VE NE NS Ne Ne We NS N Ve N N N WO WO NG N Ne WO N e We N N N o

APPENDIX F: <C(P/M DISK DEFINITION LIBRARY

CP/M 2.0 disk re-definition library

Copyright (c) 1979
Digital Rzsearch
Box 579

pacific Grove, CA
93950

CP/M logicel disk drives are defined using the

macros given below, where the sequence of calls
is:

disks n

diskdef parameter-list-9
diskdef parameter-list-1l
diskdef parameter-list-n
endef

where n is the number of logical disk drives attached
to the CP/M system, and parameter-list-i defines the
characteristics of the ith drive (i=6,1l,...,n-1)

each parameter-list-i takes the form
dn,isc,1sc,(skf] ,bls,dks,dir,cks,ofs, [§]

where

dn is the disk number ¢,1,...,n-1

fsc is tue first sector number (usually 9 or 1)
1sc is tne last sector number on a track

skf is optional "skew factor” for sector translate
bls is tne data block size (1024,2048,...,16384)
dks is tne disk size in bls increments (word)

dir is tne number of directory elements (word)

cks is tne number of dir elements to checksum

ofs is the number of tracks to skip (word)

(@] is an optional 0 which forces 1l6K/directory en

for convenience, the form

dn,dm
defines disk dn as having the same characteristics as
a previously defined disk dm,

a standard four drive CP/M system is defined by

disks 4

diskdef 0,1,26,6,1024,243,64,64,2
dsk set @

rept 3
dsk set dsk+1

diskdef %dsk,0

endm

endert

the value of "begdat" at the end of assembly defines t

6l

£l ve ~e Ne Ne Ne e wg wo

n

khdr

;}]
dpe&dn:

-e

disks

1

ndisks
dpbase
R

dsknxt

dsknxt

H
dpbhdr
dpb&dn

beginning of the uninitialize ram area above the bios,
while the valve of "enddat" defines the next location
following the end of the data area, the size of this
area is given by the value of "datsiz"” at the end of t
assembly. note that the allocation vector will be qui
large if a large disk size is defined with a small blo
size.

macro dn
define a single disk header l1list

dw x1lt&dn,d0006n ;jtranslate table

dw P006h, 60000 ;scratch area

dw dirbuf,dpb&dn ;dir buff,parm block
dw csv&dn,alvé&dn ;check, alloc vectors
endm '

macro nd
define nd disks

set nd ;;for later reference ,
equ S ;base of disk parameter blocks
generate the nd elements

set ¥

rept nd

dskhdr $%$dsknxt

set dsknxc+l

endm

endm

macro dn
equ $;disk parm block
endm '

macro data,comment

define a db statement

db data comment
endm o

macro data,comment

define a dw statement

dw data comment
endm

macro m,n

greatest common divisor of m,n

produces value gcdn as result

(used in sector translate table generation)

set m s ;variable for m
set n s;variable for n
set g ;svariable for r
rept 65535 ‘ ’

set gcdm/gcdn

set gcdm - gcdx*gcdn

if gcdr = ¢ ‘

exitm

endif

62

199: gcdm set gcdn

116: gcdn set gcdr

111: endm

112: endm

113: ;

114: diskdef macro dn, fsc,1sc,skf,bls,dks,dir,cks,bfs,kl6
115: ;; generate the set statements for later tables
116: if nul 1lsc

117: ;; current disk dn same as previous fsc

118: dpb&dn equ dpb&fsc ;eauivalent parameters

119: als&dn equ als&fsc ;same allocation vector size
126: css&dn equ css&fsc ;same checksum vector size
121: xlt&dn equ xlt&fsc ;same translate table

122 else

123: secmax set lsc-(fsc) : ;sectors @,..secmax
124: sectors set secmax+l;;number of sectors

125: alssdn set (dks)/8 ;;size of allocation vector
126: if ((dks) mod &) ne 4

127: als&dn set als&dn+l

128: endif _

129: css&dn set (cks)/4 ;;number of checksum elements
13v9: ;; generate the block shift value

131: blkval set bls/128 ;;number of sectors/block
132: blkshf set g ;;counts right 0's in blkval
133: blkmsk set] ;3cills with 1's from right
134: rept 16 ;;once for each bit position
135: if blkval=1

136: exitm

137: endif

138: ;; otherwise, high order 1 not found vyet

139: blkshf set blkshf+l

149: blkmsk set (blkmsk shl 1) or 1

141: blkval set blkval/?2

142: endm

143: ;; generate the extent mask byte v

144: blkval set bls/1624 ; snumber of kilobytes/block
145: extmsk set 7] ;3fiil from right with 1's
146: rept 16

147: if blkval=l

148: exitm

149: endif

156: ;; otherwise more to shift

151: extmsk set (extmsk shl 1) or 1

152: plkval set blkval/2

153: endm

154: ;; may be double byte allocation

155 if (dks) > 256

156: extmsk set (extmsk shr 1)

157: endif

158: ;; may be optional [#] in last position

159: if not nul k16

160: extmsk set klé

161: endif A
162: ;; now generate directory reservation bit vector
163: dirrem set dir ;:# remaining to process

63

164:
165:
166:
167
168:
169:
178
171:
172:
173:
174:
175:
176:
177:
178:
179:
186
181:
182:
183:
184:
185:
186:
187:
183:
189:
196:
191:
152:
193:
194:
195:
196:
197:
198:
199:
200
291:
202
283:
204:
285:
206
207
208:
209:
210
211:
212:
213:
214:
215:
216:
217:
213:

dirbks
dirblk

e we we

o ~e ~e

irblk
dirrem

dirrem

° e
r

Xxlt&dn

xlt&dn

o o
r

nxtsec
nxtbas

ltst

LIS T e IR 1
o we (D ~o

r s
nelts
x1lt&dn

nxtsec

nxtsec

nelts

set bls/32 ;; umber of entries per block

n

set] fill with 1's on each loop
rept 16 i ~

if dirrem=9

exitm

endif

not complete, iterate once again
shift right and add i high order bit

set (dirblk shr 1) or 8908h
if dirrem > dirbks

set dirrem-dirbks

else

set a

endif

endm C
dpbhdr dn ; 7g2nerate egu $
ddw . %sectors,<;sec per track>
ddb gblkshf,<;blcck shift>
ddb $blkmsk,<;blcck mask>

ddb $extmsk,<;extnt mask>
ddw % (dks)-1,<;aisk size-1>
ddw $(dir)-1,<;airectory max>
ddb g$dirblk shr 8,<;allocH>
ddb $dirblk anda #ffh,<;allocl>
ddw % (cks)/4,<;check size>
ddw 30fs,<;offset>

generate the translate table, if requested
it nul skf

egu 7] ;no xlate tabple
else :

if: skf = ¢ ~

equ 7] :no xlate table
else

generate the transiate taple

set 0 : siext sector to fill
set) ;smcves by one on overflow
gcd $sectors,skf

gcdn = gcd(sectors,skew)

set sectors/gcdn

neltst is number of elements to generate
before we overlap orevious elements

set neltst ;;ccunter

equ $ stranslate table
rept sectors ;;once for each sector
if sectors < 256 ‘

ddb $nxtsec+(£fsc)

else

ddw gnxtsec+(fsc)

endif

set nxtsec+(skf)

if nxtsec >= sectors

set nxtsec-sectors

endif :

set nelts-1

if nelts = ¢

64

219:

© 226

221:
222:
223:
224:
225:
226
227
228:
229
236
231:
232:
233:
234:
235
236:
237:
238:
239:
240
241:
242:
243:
244
245:
246
247
248:
249:

nxtbas
nxtsec
nelts

defds
lab:

endef

* o
’

begdat

dirbuf:

dsknxt

dsknxt

enddat
datsiz

* o
rs

set
set
set
endif
endm
endif
endif
endm

macro
ds
endm

- macro

defds
endm

macro

nxtbas+i
nxtbas
neltst

nd of nul fac test
nd. of nul bls test

(1]

lab,space
space

1b,dn,val
lb&dn, val&dn

generate the nec2ssary ram data areas

equ
ds
set

rept

las
lds
set
endm
egu
equ

$

128 ;directory access buffer
2 S
ndisks ;;once for eacn disk
alv,%dsknxt,als
¢sv,%dsknxt,css

dsknxt+1

$
S-begdat

db # at this point forces hex record

endm

65

OO WNhHEFROVWOENIONUTIE WD

€0 00 00 00 00 00 00 00 o0 e 0 o9 0 00 0 60 0 oo

R) e ey
)

NN
=
e o0 oo

22:

N
W
.o

24:
25:

28:

38:

40

47
48:
49:
50:
51:
52:
53:

APPENDIX G: BLOCKING AND DEBLOCKING ALGORITHMS.

.***

.* ; *
A Sector Deblocking Algorithms for CP/M 2.@ . *
o % *
;***
; “utility macro to compute sector mask
smask macro hblk
- compute log2(hblk), return @x as result
H (2 ** @x = hblk on return)
Qy set hblk
@x set)]
i count right shifts of @y unt11 = 1
‘rept. 8
if @y = 1
exitm
endif
Y @y is not 1, shift right one position
Qy set @y shr 1
@x set @x + 1
: endm
endm

Khkkkhkkkkkkkkkhkkhkhkhkkhkkhkkhhhkhkkhkkkhkkhkkhkhhhkhkhkhkhhhhkhhkhkkhhhkkk
. ., . o *

CP/M to host disk constants *

) . %*
;***

ws we wo we we
* % % %

blksiz equ 2048 ;:CP/M allocation size
hstsiz equ 512 shost disk sector size
hstspt equ 20 ;host disk sectors/trk
hstblk equ hstsiz/128 ;CP/M sects/host buff
cpmspt equ hstblk * hstspt ;CP/M sectors/track
secmsk equ hstblk-1 ;sector mask

smask hstblk ;compute sector mask
secshf equ @x :1og2 (hstblk)
;***
. % *
1
s ¥ BDOS constants on entry to write *
;***
wrall equ] ;jwrite to allocated
wrdir equ 1 ;write to directory
wrual equ 2 . L. ;write to unallocated

.
14

;***

% *
s * The BDOS entry points given below show the *
: * code which is relevant to deblocking only, *
o % *

ehkhhkhhkhhkhkhhkhhhkhkhkkhhhkhhhkkhhkhhhkhhhkkhhkhhhhhkhkdhhkikkddkikkkk

- =

66

54: ; DISKDEF macro, or hand coded tables go here
55: dpbase equ $;disk param block base

57: éoot:
58: wboot:

59: ;enter here on system boot to initialize
60: Xra a ; :@ to accumulator
61: sta hstact shost buffer inactive
62: sta unacnt sclear unalloc count
63: ret

64: ;

65: seldsk:

66: 1select disk

67: mov a,c ~ 3selected disk number
68: sta sekdsk :seek disk number
69: mov 1l,a +disk number to HL
70: mvi h,@

71: rept 4 smultiply by 16
72: dad h

73: endm , :

74: 1xi d,dpbase :base of parm block
75: dad d ;hl=_,dpb(curdsk)
76: ret ,

77: ;

78: settrk: o

79: ;set track given by registers BC

80 mov h,b

8l: mov l,c

82: ' shld sektrk ;track to seek

83: . ret

84: ; :

85: setsec:

86: ;set sector given by register ¢

87: mov a,c '

88: sta seksec ;sector to seek
89:. . ret

90: ;

91: setdma:

92: , ;set dma address given by BC

93: mov h,b

94: mov 1l,c

95: shld dmaadr

96: - ret

97: ; .

98: sectran:

99: ;translate sector number BC
160: mov h,b
101: - mov l,c
102: ret '
103: ;

67

104:
185:
106:
107:
108:
109:
114:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
1406
141:
142:
143:
144:
145:
146:
147:
148:
149:
150:
151:
152:
153:
154:
155:
156:
157:
158:

;***

o % *
1

i The READ entry point takes the place of *
i the previous BIOS defintion for READ., *
% *
; .
;***

read:
;read the selected CP/M sector

mvi a,l

sta readop ;read operation

sta rsflag ;must read data

mvi a,wrual

sta wr type ;treat as unalloc

jmp rwoper ;to perform the read
;***
'* *
’
HE The WRITE entry point takes the place of *
;% the previous BIOS defintion for WRITE., *
o % *
r

;***

write:
;write the selected CP/M sector

Xra a :@ to accumulator
sta readop ;not a read operation
mov a,c ;write type in c
sta wrtype
cpi wrual ;write unallocated?
jnz chkuna ;check for unalloc
’
H write to unallocated, set parameters
mvi a,blksiz/128 ;next unalloc recs
sta unacnt
1lda sekdsk ;disk to seek
sta unadsk sunadsk = sekdsk
1lhld sektrk
shld unatrk ;unatrk = sectrk
1lda seksec
sta unasec ;unasec = seksec
’
chkuna:
;check for write to unallocated sector
lda unacnt ;any unalloc remain?
ora a
jz alloc ;skip if not

~e “o

more unallocated records remain

dcr a ;unacnt = unacnt-l
sta unacnt

1da sekdsk :same disk?

1xi h,unadsk

cmp m ;s sekdsk = unadsk?
jnz alloc :skip if not

~e wo

disks are the same

68

159:
160:
161l:
162:
163:
164:
165:
166:
167:
168:
169:
170:
171:
172:
173:
174:
175:
176:
177:
178:
179:
180:
181:
182:
183:
184:
185:
186:
187:
188:
189:
196:
191:
192:
193:
194:
195:
196:
197:
198:
199:
200
201:
202
203:
204:
285:
206
207
208
209:
210
211:
212:
213:

1xi h,unatrk ,
call sektrkcmp :sektrk = unatrk?
jnz alloc ;skip if not

14

: tracks are the same
lda seksec ;same sector?
1xi h,unasec
cmp m 1seksec = unasec?
jnz alloc ;skip if not

I’

: match, move to next sector for future ref
inr m ;unasec = unasec+l
mov a,m ;end of track?
cpi cpmspt ;count CP/M sectors
jc noovf ;skip if no overflow

-e we

overflow to next track

mvi m,d ;unasec = @

lhla unatrk

inx h

shld unatrk ;unatrk = unatrk+l
H
noovf:

smatch found, mark as unnecessary read

Xra a :@ to accumulator

sta rsflag srsflag = 0

jmp rwoper ;to perform the write
H
alloc:

;not an unallocated record, requires pre-read

Xra a ;@ to accum

sta unacnt sunacnt = @

inr a :1 to accum

sta rsflag ;rsflag = 1
;**************************‘k**************************
;* *
;¥ Common code for READ and WRITE follows *
ok *
;’************'k*******'k**********************‘k*********

rwoper:
;enter here to perform the read/write

Xra a ;zero to accum

sta erflag ;no errors (yet)

1da seksec ;compute host sector
rept secshf

ora a ;carry = 0

rar ;shift right

endm

sta sekhst. shost sector to seek

~e wo

active host sector?

1xi h,hstact shost active flag
mov a,m
mvi m,l ;always becomes 1

69

214:
215:
216:
217
218:
219:
220
221:
222
223:
224:
225:
226:
227:
228:
229:
230:
231:
232:
233:
234:
235:
236:
237:
238:
239:
240
241:
242:
243:
244;
245:
246:
247:
248
249:
250:
251:
252:
253:
254
255:
256
257
258:
259:
260
261:
262:
263:
264:
265:
266:
267:
268:

e weo

- weo

—e we

14
nomatch:

Fh ~e

ilhst:

match:

~e

ora a ;was it already?
jz filhst ;£ill host if not

host buffer active, same as seek buffer?
lda sekdsk

1xi h,hstdsk ;same disk?
cmp m :sekdsk = hstdsk?
jnz nomatch

same disk, same track?

1xi h,hsttrk
call sektrkcmp ;sektrk = hsttrk?
jnz nomatch

same disk, same track, same buffer?
lda sekhst

1xi h,hstsec ;sekhst = hstsec?
cmp m

jz match ;skip if match
;proper disk, but not correct sector

lda hstwrt shost written?
ora a

cnz writehst ;clear host buff

;may have to f£ill the host buffer
1da sekdsk
sta hstdsk
1hld sektrk
shld hsttrk

lda sekhst

sta hstsec

lda rsflag ;heed to read?
ora a

cnz readhst ;ves, if 1

Xra a :10 to accum

sta hstwrt ;no pending write

;copy data to or from buffer

lda seksec ;mask buffer number
ani secmsk 1least signif bits
mov 1,a ;ready to shift
mvi h,o ;double count

rept 7 ;shift left 7

dad h

endm

hl has relative host buffer address

1xi d,hstbuf

dad d ;hl = host address
xchg ;now in DE

1hld dmaadr :get/put CP/M data
mvi c,128 :length of move

70

269: 1da readop swhich way?
270 ora a

271: jnz rwmove ;skip if read

272: ;)

273: ; write operation, mark and switch direction
274: mvi a,l

275: sta hstwrt shstwrt = 1

276: xchg ;source/dest swap

277: 3

278: rwmove:

279: ;C initially 128, DE is source, HL is dest
28d: ldax d ;source character

281: inx d

282: mov m,a ;to dest

283: inx h

284: dcr c ;loop 128 times

285: jnz rwmove

286: ;

287: ; data has been moved to/from host buffer

288: lda wrtype ;write type

289: cpi wrdir ;to directory?

290 lda - erflag ;in case of errors
291: rnz ;no further processing
292: ;

293: ; clear host buffer for directory write

294; ora a ;errors?

295: rnz ;skip if so

296: Xra a :0 to accum

297: sta hstwrt sbuffer written

298: call writehst

299: 1da erflag

300: ret

301: ;

3@2: ;***
303: ;* ’ *
304: ;* Utility subroutine for 16-bit compare *
305: ;* *

3@6: ;***
307: sektrkcmp:

308: ;HL = .unatrk or ,hsttrk, compare with sektrk
369: xchg

310: 1xi h,sektrk

311: ldax d :low byte compare
312: cmp m ; same?

313: rnz sreturn if not
314: ; low bytes equal, test high 1s

315: inx d

316: inx h

317: ldax a

318: cmp m ;sets flags

319: 4 ret

3208: ;

71

321:
322:

323:

324:
325:
326:
327:
328:
329:
330:
331:
332:
333:
334:
335:
336:
337:
338:
339:
349:
341:
342:
343:
344:
345:;
346:
347:
348:
349:
3506
351:
352:
353:
354:
355:
356
357:
358:
359:
360
361:
362:
363:
364:
365:
366:
367:
368:
369:
370:

;***

o« % *
s * WRITEHST performs the physical write to *
;* the host disk, READHST reads the physical *
s * disk. *
e *
;***

writehst:
shstdsk host disk #, hsttrk = host track #,
shstsec host sect #. write "hstsiz" bytes
;from hstbuf and return error flag in erflag.
;return erflag non-zero if error

ret
;
readhst:
shstdsk = host disk #, hsttrk = host track #,
;hstsec = host sect #. read "hstsiz" bytes
sinto hstbuf and return error flag in erflag.
ret
;***
« X *
I
;¥ Unitialized RAM data areas *
ok *
;*************************************n***************
sekdsk: ds 1 :seek disk number
sektrk: ds 2 sseek track number
seksec: ds 1 ;seek sector number
; .
hstdsk: ds 1 thost disk number
hsttrk: ds 2 shost track number
hstsec: ds 1 :host sector number
sekhst: ds 1 1seek shr secshf
hstact: ds 1 shost active flag
hstwrt: ds 1 shost written flag

r

unacnt: ds 1 sunalloc rec cnt
unadsk: ds 1 :last unalloc disk
unatrk: ds 2 slast unalloc track
unasec: ds 1 :last unalloc sector

.
’

erflag: ds 1 ;error reporting
rsflag: ds 1 sread sector flag
readop: ds 1 ;1 if read operation
wrtype: ds 1 ;write operation type
dmaadr: ds 2 ;last dma address
hstbuf: ds hstsiz ;host buffer

.
’

72

371:
372:
373:
374:
375:
376:

e Ne we we we

hhkkkkhkkhkkkhkkhhkkhkhkkhkhkkhkhkhhkkhkhkhkhkkhkkhkkkkhkkhkkkhkkhkkhkhkkkkkk

*

* The ENDEF macro invocation goes here

*

*
*
*

kKhkhkkhkhkkhkhkkkkhkkhkhkkkkhkkhhhhkkhkhkhhkhhkkhkhkhkkhkhkhkkhkrkkkhkkkkkx

end

73

